Menu Close

Question-117511




Question Number 117511 by Canovas last updated on 12/Oct/20
Answered by bemath last updated on 12/Oct/20
∫ (dx/(cos^2 x (4−9tan^2 x))) = ∫ ((sec^2 x)/(4−9tan^2 x)) dx  = ∫ ((d(tan x))/(4−9tan^2 x)) = ∫ (dϕ/(4−9ϕ^2 ))  =∫ (dϕ/((2+3ϕ)(2−3ϕ))) =(1/4) ∫ (1/(2−3ϕ))+(1/(2+3ϕ)) dϕ  = (1/4){−(1/3)ln(2−3ϕ)+(1/3)ln (2+3ϕ)}+c   = (1/(12)) ln ∣((2+3ϕ)/(2−3ϕ))∣+ c  = (1/(12)) ln ∣((2+3tan x)/(2−3tan x)) ∣+ c
dxcos2x(49tan2x)=sec2x49tan2xdx=d(tanx)49tan2x=dφ49φ2=dφ(2+3φ)(23φ)=14123φ+12+3φdφ=14{13ln(23φ)+13ln(2+3φ)}+c=112ln2+3φ23φ+c=112ln2+3tanx23tanx+c
Commented by Canovas last updated on 12/Oct/20
Really I haven′t understood sir
ReallyIhaventunderstoodsir
Commented by bobhans last updated on 12/Oct/20
it is by substitution sir.  ϕ = tan x so dϕ = sec^2 x dx
itisbysubstitutionsir.φ=tanxsodφ=sec2xdx
Answered by 1549442205PVT last updated on 12/Oct/20
F=∫(dx/(4cos^2 x−9sin^2 x))=∫((1/(cos^2 x))/(4−9tan^2 x))dx  =−∫((1+tan^2 x)/(9tan^2 x−4))dx.Put tanx=t  ⇒dt=(1+t^2 )dx  F=−∫(((1+t^2 )dt)/((1+t^2 )(9t^2 −4)))=+∫(dt/(9t^2 −4))  =−(1/9)∫(dt/(t^2 −(4/9)))=−(1/9)×(3/4)∫((1/(t−(2/3)))−(1/(t+(2/3))))dt  =−(1/(12))ln∣((3t−2)/(3t+2))∣+C=(1/(12))ln∣((3tanx+2)/(3tanx−2))∣+C
F=dx4cos2x9sin2x=1cos2x49tan2xdx=1+tan2x9tan2x4dx.Puttanx=tdt=(1+t2)dxF=(1+t2)dt(1+t2)(9t24)=+dt9t24=19dtt249=19×34(1t231t+23)dt=112ln3t23t+2+C=112ln3tanx+23tanx2+C
Answered by mathmax by abdo last updated on 12/Oct/20
I =∫  (dx/(4cos^2 x−9sin^2 x)) ⇒ I =∫  (dx/(4((1+cos(2x))/2)−9((1−cos(2x))/2)))  =∫  (dx/(2+2cos(2x)−(9/2)+(9/2)cos(2x))) =∫ ((2dx)/(4+4cos(2x)−9+9cos(2x)))  =∫ ((2dx)/(13cos(2x)−5)) =_(2x=t)     ∫ (dt/(13 cost−5)) =_(tan((t/2))=u)   ∫   ((2du)/((1+u^2 )(13((1−u^2 )/(1+u^2 ))−5))) =∫ ((2du)/(13(1−u^2 )−5(1+u^2 )))  =∫ ((2du)/(13−13u^2 −5−5u^2 )) =∫ ((2du)/(8−18u^2 )) =∫  (du/(4−9u^2 ))  =∫  (du/((2−3u)(2+3u))) =(1/4)∫((1/(2−3u))+(1/(2+3u)))du=(1/4)ln∣4−9u^2 ∣ +c  =(1/4)ln∣4−9tan^2 (x)∣ +c
I=dx4cos2x9sin2xI=dx41+cos(2x)291cos(2x)2=dx2+2cos(2x)92+92cos(2x)=2dx4+4cos(2x)9+9cos(2x)=2dx13cos(2x)5=2x=tdt13cost5=tan(t2)=u2du(1+u2)(131u21+u25)=2du13(1u2)5(1+u2)=2du1313u255u2=2du818u2=du49u2=du(23u)(2+3u)=14(123u+12+3u)du=14ln49u2+c=14ln49tan2(x)+c
Commented by bobhans last updated on 13/Oct/20
how do you get (1/4)∫ ((1/(2−3u)) +(1/(2+3u))) du  = (1/4)ln ∣4−9u^2 ∣ ? it not correct
howdoyouget14(123u+12+3u)du=14ln49u2?itnotcorrect

Leave a Reply

Your email address will not be published. Required fields are marked *