Menu Close

Question-117912




Question Number 117912 by A8;15: last updated on 14/Oct/20
Commented by A8;15: last updated on 14/Oct/20
help please
Answered by Lordose last updated on 14/Oct/20
    ∫_( 0) ^( 1) (((Li_2 (x))^2 )/x) + ∫_( 0) ^( 1) ((Li_2 (x))/x)  ∫_( 0) ^( 1) (((Li_2 (x))^2 )/x) + ∣Li_3 (x)∣_0 ^1   Ω + ζ(3)  Ω= ∫_0 ^( 1) ((Li_2 ^2 (x))/x)
$$ \\ $$$$ \\ $$$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \frac{\left(\mathrm{Li}_{\mathrm{2}} \left(\mathrm{x}\right)\right)^{\mathrm{2}} }{\mathrm{x}}\:+\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{Li}_{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{x}} \\ $$$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \frac{\left(\mathrm{Li}_{\mathrm{2}} \left(\mathrm{x}\right)\right)^{\mathrm{2}} }{\mathrm{x}}\:+\:\mid\mathrm{Li}_{\mathrm{3}} \left(\mathrm{x}\right)\mid_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\Omega\:+\:\zeta\left(\mathrm{3}\right) \\ $$$$\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{Li}_{\mathrm{2}} ^{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{x}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *