Question Number 118011 by mmmmmm1 last updated on 14/Oct/20
Answered by mr W last updated on 14/Oct/20
$$\left({x}−{h}\right)^{\mathrm{2}} +\left({y}−{k}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$ \\ $$$$\left(\mathrm{0}−{h}\right)^{\mathrm{2}} +\left(\mathrm{0}−{k}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \:\:…\left({i}\right) \\ $$$$\left(−\mathrm{4}−{h}\right)^{\mathrm{2}} +\left(\mathrm{0}−{k}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \:\:…\left({ii}\right) \\ $$$$\left(\mathrm{2}−{h}\right)^{\mathrm{2}} +\left(−\mathrm{3}−{k}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \:\:…\left({iii}\right) \\ $$$$\left({ii}\right)−\left({i}\right): \\ $$$$\mathrm{4}\left(\mathrm{4}+\mathrm{2}{h}\right)=\mathrm{0}\:\Rightarrow{h}=−\mathrm{2} \\ $$$$\left({iii}\right)−\left({i}\right): \\ $$$$\mathrm{2}\left(\mathrm{2}−\mathrm{2}{h}\right)+\mathrm{3}\left(\mathrm{3}+\mathrm{2}{k}\right)=\mathrm{0}\:\Rightarrow{k}=−\frac{\mathrm{7}}{\mathrm{2}} \\ $$$${R}^{\mathrm{2}} =\left(\mathrm{2}\right)^{\mathrm{2}} +\left(\frac{\mathrm{7}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{\mathrm{65}}{\mathrm{4}} \\ $$$$\Rightarrow{R}=\frac{\sqrt{\mathrm{65}}}{\mathrm{2}} \\ $$
Answered by MJS_new last updated on 14/Oct/20
$$\mathrm{it}'\mathrm{s}\:\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{with} \\ $$$${a}=\mathrm{4} \\ $$$${b}=\sqrt{\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }=\sqrt{\mathrm{13}} \\ $$$${c}=\sqrt{\left(\mathrm{2}+\mathrm{4}\right)^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }=\sqrt{\mathrm{45}} \\ $$$${R}=\frac{{abc}}{\:\sqrt{\left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)}}=\frac{\sqrt{\mathrm{65}}}{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{area}\:\mathrm{of}\:\mathrm{circle}=\frac{\mathrm{65}\pi}{\mathrm{4}} \\ $$
Answered by mr W last updated on 14/Oct/20
$${an}\:{other}\:{way}: \\ $$$${a}=\mathrm{4} \\ $$$${b}=\sqrt{\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }=\sqrt{\mathrm{13}} \\ $$$${c}=\sqrt{\mathrm{3}^{\mathrm{2}} +\left(\mathrm{2}+\mathrm{4}\right)^{\mathrm{2}} }=\sqrt{\mathrm{45}} \\ $$$$\Delta=\frac{\mathrm{4}×\mathrm{3}}{\mathrm{2}}=\mathrm{6} \\ $$$${R}=\frac{{abc}}{\mathrm{4}\Delta}=\frac{\mathrm{4}×\sqrt{\mathrm{13}}×\sqrt{\mathrm{45}}}{\mathrm{4}×\mathrm{6}}=\frac{\sqrt{\mathrm{65}}}{\mathrm{2}} \\ $$
Answered by 1549442205PVT last updated on 15/Oct/20
Commented by 1549442205PVT last updated on 15/Oct/20