Question-118040 Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 118040 by mathocean1 last updated on 14/Oct/20 Answered by Ar Brandon last updated on 14/Oct/20 limx→π31−2cosxπ−3x=00=limx→π32sinx−3=2×32÷−3=−13 Answered by bobhans last updated on 15/Oct/20 L=limx→π/31−2cosxπ−3xsetx=π3+u,u→0L=limu→01−2cos(u+π3)π−(π+3u)L=limu→01−2(12cosu−123sinu)−3uL=limu→01−cosu+3sinu−3uL=limu→02sin2(u2)+23sin(u2)cos(u2)−3uL=limu→02sin(u2){sin(u2)+3cos(u2)}−3uL=−13(0+3)=−33 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Let-f-is-a-2-nd-degree-polynomial-1-2pii-z-2-z-f-z-f-z-dz-0-and-1-2pii-z-2-z-2-f-z-f-z-dz-2-If-f-0-2017-find-explicit-form-of-f-z-Next Next post: Question-183583 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.