Menu Close

Question-118040




Question Number 118040 by mathocean1 last updated on 14/Oct/20
Answered by Ar Brandon last updated on 14/Oct/20
lim_(x→(π/3)) ((1−2cosx)/(π−3x))=(0/0)=lim_(x→(π/3)) ((2sinx)/(−3))=2×((√3)/2)÷−3=−(1/( (√3)))
limxπ312cosxπ3x=00=limxπ32sinx3=2×32÷3=13
Answered by bobhans last updated on 15/Oct/20
L=lim_(x→π/3)  ((1−2cos x)/(π−3x))  set x=(π/3)+u , u→0  L=lim_(u→0) ((1−2cos (u+(π/3)))/(π−(π+3u)))  L=lim_(u→0)  ((1−2((1/2)cos u−(1/2)(√3) sin u))/(−3u))  L=lim_(u→0)  ((1−cos u+(√3) sin u)/(−3u))  L=lim_(u→0)  ((2sin^2 ((u/2))+2(√3) sin ((u/2))cos ((u/2)))/(−3u))  L=lim_(u→0)  ((2sin ((u/2)){sin ((u/2))+(√3) cos ((u/2))})/(−3u))  L= −(1/3)(0+(√3)) = −((√3)/3)
L=limxπ/312cosxπ3xsetx=π3+u,u0L=limu012cos(u+π3)π(π+3u)L=limu012(12cosu123sinu)3uL=limu01cosu+3sinu3uL=limu02sin2(u2)+23sin(u2)cos(u2)3uL=limu02sin(u2){sin(u2)+3cos(u2)}3uL=13(0+3)=33

Leave a Reply

Your email address will not be published. Required fields are marked *