Menu Close

Question-118210




Question Number 118210 by bemath last updated on 16/Oct/20
Answered by john santu last updated on 16/Oct/20
Reduces the equation of the cylinder  to r^2 =2r cos θ or r = 2cos θ, in θ ∈ [0,π ]  The volume equals   ∫∫(8x^2 +8y^2 )dA =∫_0 ^π ∫_0 ^(2cos θ) (8r^2 ).(rdr dθ)   =∫_0 ^π  (2r^4 )∣_0 ^(2cos θ)  dθ = ∫_0 ^π 32 cos^4 θ dθ   = 32∫_0 ^π ((1/2)(1+cos 2θ))^2 dθ   = 4∫_0 ^π  (3+4cos 2θ+cos (4θ)) dθ   = 12π
Reducestheequationofthecylindertor2=2rcosθorr=2cosθ,inθ[0,π]Thevolumeequals(8x2+8y2)dA=π002cosθ(8r2).(rdrdθ)=π0(2r4)02cosθdθ=0π32cos4θdθ=320π(12(1+cos2θ))2dθ=4π0(3+4cos2θ+cos(4θ))dθ=12π

Leave a Reply

Your email address will not be published. Required fields are marked *