Question Number 118384 by mohammad17 last updated on 17/Oct/20
Answered by Dwaipayan Shikari last updated on 18/Oct/20
$$\int_{\mathrm{0}} ^{\pi} \frac{{x}}{\mathrm{1}+{esinx}}{dx}=\int_{\mathrm{0}} ^{\pi} \frac{\pi−{x}}{\mathrm{1}+{esinx}}{dx}={I} \\ $$$$\mathrm{2}{I}=\pi\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{1}}{\mathrm{1}+{esinx}}{dx} \\ $$$$\mathrm{2}{I}=\mathrm{2}\pi\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{2}{te}}{\mathrm{1}+{t}^{\mathrm{2}} }}.\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$${I}=\pi\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}{te}+{t}^{\mathrm{2}} }{dt} \\ $$$${I}=\pi\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left({t}+{e}\right)^{\mathrm{2}} −{e}^{\mathrm{2}} +\mathrm{1}} \\ $$$${I}=\frac{\pi}{\:\sqrt{\mathrm{1}−{e}^{\mathrm{2}} }}\left[{tan}^{−\mathrm{1}} \frac{{t}+{e}}{\:\sqrt{\mathrm{1}−{e}^{\mathrm{2}} }}\right]_{\mathrm{0}} ^{\infty} =\frac{\pi^{\mathrm{2}} }{\mathrm{2}\sqrt{\mathrm{1}−{e}^{\mathrm{2}} }} \\ $$