Menu Close

Question-118757




Question Number 118757 by mohammad17 last updated on 19/Oct/20
Commented by mohammad17 last updated on 19/Oct/20
with out x=tan θ
withoutx=tanθ
Answered by mnjuly1970 last updated on 19/Oct/20
(π/4)=^? answer  method 1:   euler reflection formula.  x^2 =t ⇒Ω=(1/2) ∫_0 ^( ∞) (t^((((−1)/2)+1)−1) /((t+1)^2 ))dt    ⇒ Ω=(1/2) β((1/2),(3/2))=(1/2)Γ((1/2))Γ((3/2))  =((1/2))^2 Γ^2 ((1/2))=^(Γ((1/2))=(√π)) (π/4)  ✓✓          ...m.n.july.1970...  ..........  methot 2 :   x=(1/t) ⇒ Ω =∫_0 ^( ∞) (dt/(t^2 (1+(1/t^2 ))^2 ))     =∫_0 ^∞ (((t^2 +1−1))/((1+t^2 )^2 ))dt=(π/2) −Ω  2Ω =(π/2) ⇒ Ω=(π/4)  ✓✓     .m.n.1970..
π4=?answermethod1:eulerreflectionformula.x2=tΩ=120t(12+1)1(t+1)2dtΩ=12β(12,32)=12Γ(12)Γ(32)=(12)2Γ2(12)=Γ(12)=ππ4m.n.july.1970.methot2:x=1tΩ=0dtt2(1+1t2)2=0(t2+11)(1+t2)2dt=π2Ω2Ω=π2Ω=π4.m.n.1970..
Commented by mohammad17 last updated on 19/Oct/20
yes sir its right
yessiritsright
Commented by PRITHWISH SEN 2 last updated on 19/Oct/20
excellent
excellent
Commented by mnjuly1970 last updated on 19/Oct/20
thank you
thankyou
Commented by mnjuly1970 last updated on 19/Oct/20
 sincerely yours
sincerelyyours
Answered by 1549442205PVT last updated on 19/Oct/20
Put x=tanϕ⇒dx=(1+tan^2 ϕ)dϕ  ∫_0 ^∞ (dx/((x^2 +1)^2 ))=∫_0 ^(π/2) (dϕ/((1+tan^2 ϕ)))=∫_0 ^(π/2) cos^2 ϕdϕ  =∫_0 ^(π/2) ((1+cos2ϕ)/2)dϕ=((ϕ/2)+(1/4)sin2ϕ)_0 ^(π/2)   =(π/4)
Putx=tanφdx=(1+tan2φ)dφ0dx(x2+1)2=0π2dφ(1+tan2φ)=0π2cos2φdφ=0π21+cos2φ2dφ=(φ2+14sin2φ)0π2=π4

Leave a Reply

Your email address will not be published. Required fields are marked *