Menu Close

Question-118768




Question Number 118768 by mathdave last updated on 19/Oct/20
Answered by mindispower last updated on 23/Oct/20
Σ_(m=0) ^n e^(imx) =((1−(e^(ix) )^(n+1) )/(1−e^(ix) ))=((e^(i((nx)/2)) (e^(−i(((n+1)x)/2)) −e^(i(((n+1)x)/2)) ))/(e^(−i(x/2)) −e^(i(x/2)) ))  =e^(i((nx)/2)) .((sin(((n+1)/2)x))/(sin((x/2))))  ⇒((sin(((2n+1)/2)x))/(sin((x/2))))=e^(−inx) Σ_(m=0) ^(2n) e^(imx)   ∫_(−∞) ^∞ ((e^(ikx)  )/(1+x^2 ))dx ,k≥0  C_R ={Re^(ia) ,a∈[0,π]}  ∫_C_R  (e^(ikx) /(1+x^2 ))dx=∫_(−∞) ^∞ (e^(ikx) /(1+x^2 ))dx+∫_0 ^π ((iRe^(−ksin(x)) dx)/(1+R^2 e^(2ix) ))  =2iπ.(e^(−k) /(2i))=(π/e^k ),  ⇒Σ_(m≤2n) (π/e^(∣m−n∣) )=Σ_(m≤n) (π/e^(n−m) )+Σ_(m>n) (π/e^(m−n) )  =(π/e^n )(((1−e^((n+1)) )/(1−e)))+πe^n (e^(−(n+1)) (((1−e^(−(n)) )/(1−e^(−1) ))))  lim n→0  =−((πe)/(1−e))+πe^(−1) .(1/(1−e^− ))  =(π/(e−1))(e+1)=π(((e^(1/2) /2)+(e^(−(1/2)) /2) )/((1/2)(e^(1/2) −e^(−(1/2)) )))=πcoth((1/2))
nm=0eimx=1(eix)n+11eix=einx2(ei(n+1)x2ei(n+1)x2)eix2eix2=einx2.sin(n+12x)sin(x2)sin(2n+12x)sin(x2)=einx2nm=0eimxeikx1+x2dx,k0CR={Reia,a[0,π]}CReikx1+x2dx=eikx1+x2dx+0πiReksin(x)dx1+R2e2ix=2iπ.ek2i=πek,m2nπemn=mnπenm+m>nπemn=πen(1e(n+1)1e)+πen(e(n+1)(1e(n)1e1))limn0=πe1e+πe1.11e=πe1(e+1)=πe122+e12212(e12e12)=πcoth(12)

Leave a Reply

Your email address will not be published. Required fields are marked *