Question-118791 Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 118791 by Algoritm last updated on 19/Oct/20 Answered by Olaf last updated on 19/Oct/20 fp(a)=∑pn=1sin(2n∗a)2nfp(a)=∑pn=1ei2na−e−i2na2n+1ifp(a)=12i∑pn=1(e2ia2)n−12i∑pn=1(e−2ia2)nfp(a)=12i.e2ia2.1−e2iap2p1−e2ia2−12i.e−2ia2.1−e−2iap2p1−e−2ia2f∞(a)=12i.e2ia2.11−e2ia2−12i.e−2ia2.11−e−2ia2f∞(a)=12i.e2ia2−e2ia−12i.e−2ia2−e−2iaf∞(a)=12i[e2ia2−e2ia−e−2ia2−e−2ia]f∞(a)=12i[e2ia(2−e−2ia)−e−2ia(2−e2ia)(2−e2ia)(2−e−2ia)]f∞(a)=12i[2(e2ia−e−2ia)4−2(e2ia+e−2ia)+1]f∞(a)=2sin(2a)5−4cos(2a) Answered by mathmax by abdo last updated on 19/Oct/20 ∑n=1∞sin(2na)2n=Im(∑n=0∞e2ina2n)wehave∑n=0∞e2ina2n=∑n=0∞(e2ia2)n=11−e2ia2(∣e2ia2∣=12<1)=22−e2ia=22−cos(2a)−isin(2a)=2(2−cos(2a)+isin(2a))(2−cos(2a))2+sin2(2a)=4−2cos(2a)+2isin(2a)4−4cos(2a)+cos2(2a)+sin2(2a)=4−2cos(2a)+2isin(2a)5−4cos(2a)⇒∑n=1∞sin(2na)2n=2sin(2a)5−4cos(2a) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: All-time-Universal-Formula-determinant-OLD-1-NEW-Year-The-above-formula-applies-every-year-Month-It-also-applies-every-month-Day-It-also-applies-eNext Next post: Show-by-recurence-that-a-b-n-k-0-n-C-n-k-a-k-b-n-k- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.