Menu Close

Question-118791




Question Number 118791 by Algoritm last updated on 19/Oct/20
Answered by Olaf last updated on 19/Oct/20
f_p (a) = Σ_(n=1) ^p ((sin(2n∗a))/2^n )  f_p (a) = Σ_(n=1) ^p ((e^(i2na) −e^(−i2na) )/(2^(n+1) i))  f_p (a) = (1/(2i))Σ_(n=1) ^p ((e^(2ia) /2))^n −(1/(2i))Σ_(n=1) ^p ((e^(−2ia) /2))^n   f_p (a) = (1/(2i)).(e^(2ia) /2).((1−(e^(2iap) /2^p ))/(1−(e^(2ia) /2)))−(1/(2i)).(e^(−2ia) /2).((1−(e^(−2iap) /2^p ))/(1−(e^(−2ia) /2)))  f_∞ (a) = (1/(2i)).(e^(2ia) /2).(1/(1−(e^(2ia) /2)))−(1/(2i)).(e^(−2ia) /2).(1/(1−(e^(−2ia) /2)))  f_∞ (a) = (1/(2i)).(e^(2ia) /(2−e^(2ia) ))−(1/(2i)).(e^(−2ia) /(2−e^(−2ia) ))  f_∞ (a) = (1/(2i))[(e^(2ia) /(2−e^(2ia) ))−(e^(−2ia) /(2−e^(−2ia) ))]  f_∞ (a) = (1/(2i))[((e^(2ia) (2−e^(−2ia) )−e^(−2ia) (2−e^(2ia) ))/((2−e^(2ia) )(2−e^(−2ia) )))]  f_∞ (a) = (1/(2i))[((2(e^(2ia) −e^(−2ia) ))/(4−2(e^(2ia) +e^(−2ia) )+1))]  f_∞ (a) = ((2sin(2a))/(5−4cos(2a)))
fp(a)=pn=1sin(2na)2nfp(a)=pn=1ei2naei2na2n+1ifp(a)=12ipn=1(e2ia2)n12ipn=1(e2ia2)nfp(a)=12i.e2ia2.1e2iap2p1e2ia212i.e2ia2.1e2iap2p1e2ia2f(a)=12i.e2ia2.11e2ia212i.e2ia2.11e2ia2f(a)=12i.e2ia2e2ia12i.e2ia2e2iaf(a)=12i[e2ia2e2iae2ia2e2ia]f(a)=12i[e2ia(2e2ia)e2ia(2e2ia)(2e2ia)(2e2ia)]f(a)=12i[2(e2iae2ia)42(e2ia+e2ia)+1]f(a)=2sin(2a)54cos(2a)
Answered by mathmax by abdo last updated on 19/Oct/20
Σ_(n=1) ^(∞ )  ((sin(2na))/2^n ) =Im(Σ_(n=0) ^∞  (e^(2ina) /2^n ))  we have  Σ_(n=0) ^∞  (e^(2ina) /2^n ) =Σ_(n=0) ^∞  ((e^(2ia) /2))^n  =(1/(1−(e^(2ia) /2)))   (∣(e^(2ia) /2)∣=(1/2)<1)  =(2/(2−e^(2ia) )) =(2/(2−cos(2a)−isin(2a))) =((2(2−cos(2a)+isin(2a)))/((2−cos(2a))^2 +sin^2 (2a)))  =((4−2cos(2a)+2isin(2a))/(4−4cos(2a)+cos^2 (2a)+sin^2 (2a))) =((4−2cos(2a)+2isin(2a))/(5−4cos(2a)))  ⇒Σ_(n=1) ^∞  ((sin(2na))/2^n ) =((2sin(2a))/(5−4cos(2a)))
n=1sin(2na)2n=Im(n=0e2ina2n)wehaven=0e2ina2n=n=0(e2ia2)n=11e2ia2(e2ia2∣=12<1)=22e2ia=22cos(2a)isin(2a)=2(2cos(2a)+isin(2a))(2cos(2a))2+sin2(2a)=42cos(2a)+2isin(2a)44cos(2a)+cos2(2a)+sin2(2a)=42cos(2a)+2isin(2a)54cos(2a)n=1sin(2na)2n=2sin(2a)54cos(2a)

Leave a Reply

Your email address will not be published. Required fields are marked *