Question Number 119109 by bagjagunawan last updated on 22/Oct/20
Answered by 1549442205PVT last updated on 22/Oct/20
$$\mathrm{P}=\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{cos}\frac{\pi}{\mathrm{20}}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{cos}\frac{\mathrm{3}\pi}{\mathrm{20}}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{cos}\frac{\mathrm{9}\pi}{\mathrm{20}}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{cos}\frac{\mathrm{27}\pi}{\mathrm{20}}\right) \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{cos9}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{cos81}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{cos27}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{cos63}\right) \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{cos9}+\mathrm{cos81}}{\mathrm{2}}+\mathrm{cos9cos81}\right) \\ $$$$×\left(\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{cos27}−\mathrm{cos63}}{\mathrm{2}}−\mathrm{cos27cos63}\right) \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{cos45cos36}+\frac{\mathrm{cos90}+\mathrm{cos72}}{\mathrm{2}}\right) \\ $$$$×\left(\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{sin18sin45}−\frac{\mathrm{cos90}+\mathrm{cos36}}{\mathrm{2}}\right) \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{4}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{cos36}+\frac{\mathrm{sin18}}{\mathrm{2}}\right)\left(\frac{\mathrm{1}}{\mathrm{4}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{sin18}−\frac{\mathrm{cos36}}{\mathrm{2}}\right)\left(\mathrm{1}\right) \\ $$$$\bullet\mathrm{sin36}=\mathrm{cos54}\Leftrightarrow\mathrm{2sin18cos18}=\mathrm{4cos}^{\mathrm{3}} \mathrm{18}−\mathrm{3cos18} \\ $$$$\Leftrightarrow\mathrm{2sin18}=\mathrm{4cos}^{\mathrm{2}} \mathrm{18}−\mathrm{3}=\mathrm{4}\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \mathrm{18}\right)−\mathrm{3} \\ $$$$\Rightarrow\mathrm{4sin}^{\mathrm{2}} \mathrm{18}+\mathrm{2sin18}−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{sin18}=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}\Rightarrow\mathrm{cos36}=\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \mathrm{18} \\ $$$$=\mathrm{1}−\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{4}}=\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{4}}.\mathrm{Replace}\:\mathrm{into}\:\left(\mathrm{1}\right)\mathrm{we} \\ $$$$\mathrm{get}\:\mathrm{P}=\left(\frac{\mathrm{1}}{\mathrm{4}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}.\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{4}}+\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{8}}\right) \\ $$$$×\left(\frac{\mathrm{1}}{\mathrm{4}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}.\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}−\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{8}}\right) \\ $$$$=\frac{\sqrt{\mathrm{5}}+\mathrm{1}+\sqrt{\mathrm{2}}\left(\sqrt{\mathrm{5}}+\mathrm{1}\right)}{\mathrm{8}}×\frac{\sqrt{\mathrm{2}}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)−\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{8}} \\ $$$$=\frac{\sqrt{\mathrm{10}}+\mathrm{1}+\sqrt{\mathrm{5}}+\sqrt{\mathrm{2}}}{\mathrm{8}}.\frac{\sqrt{\mathrm{10}}+\mathrm{1}−\left(\sqrt{\mathrm{5}}+\sqrt{\mathrm{2}}\right)}{\mathrm{8}} \\ $$$$=\frac{\mathrm{11}+\mathrm{2}\sqrt{\mathrm{10}}−\left(\mathrm{7}+\mathrm{2}\sqrt{\mathrm{10}}\right)}{\mathrm{64}}=\frac{\mathrm{1}}{\mathrm{16}} \\ $$