Menu Close

Question-119158




Question Number 119158 by mathdave last updated on 22/Oct/20
Answered by MJS_new last updated on 22/Oct/20
p=tan α  q=tan β  p+q=2  (√(p^2 +1))+(√(q^2 +1))=3  (p/( (√(p^2 +1))))+(q/( (√(q^2 +1))))=?  q=2−p  (√(p^2 +1))+(√(p^2 −4p+5))=3  ⇒ p=1±((3(√5))/(10)) ⇒ q=1∓((3(√5))/(10))  ⇒ answer is ((48)/(41))
$${p}=\mathrm{tan}\:\alpha \\ $$$${q}=\mathrm{tan}\:\beta \\ $$$${p}+{q}=\mathrm{2} \\ $$$$\sqrt{{p}^{\mathrm{2}} +\mathrm{1}}+\sqrt{{q}^{\mathrm{2}} +\mathrm{1}}=\mathrm{3} \\ $$$$\frac{{p}}{\:\sqrt{{p}^{\mathrm{2}} +\mathrm{1}}}+\frac{{q}}{\:\sqrt{{q}^{\mathrm{2}} +\mathrm{1}}}=? \\ $$$${q}=\mathrm{2}−{p} \\ $$$$\sqrt{{p}^{\mathrm{2}} +\mathrm{1}}+\sqrt{{p}^{\mathrm{2}} −\mathrm{4}{p}+\mathrm{5}}=\mathrm{3} \\ $$$$\Rightarrow\:{p}=\mathrm{1}\pm\frac{\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{10}}\:\Rightarrow\:{q}=\mathrm{1}\mp\frac{\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{10}} \\ $$$$\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:\frac{\mathrm{48}}{\mathrm{41}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *