Menu Close

Question-119192




Question Number 119192 by help last updated on 22/Oct/20
Answered by Olaf last updated on 22/Oct/20
∀k∈N^∗ , k^2 +1 > k^2   ∀k∈N^∗ , (k^2 +1)^3  > k^6   ∀k∈N^∗ , (1/((k^2 +1)^3 )) < (1/k^6 )  ∀k∈N^∗ , (k/((k^2 +1)^3 )) < (1/k^5 )  Σ_(k=1) ^∞ (k/((k^2 +1)^3 )) < Σ_(k=1) ^∞ (1/k^5 )  And Σ_(k=1) ^∞ (1/k^5 ) converges.  Σ_(k=1) ^∞ (1/k^5 ) = ζ(5) ≈ 1,037  ⇒ Σ_(k=1) ^∞ (k/((k^2 +1)^3 )) converges.
$$\forall{k}\in\mathbb{N}^{\ast} ,\:{k}^{\mathrm{2}} +\mathrm{1}\:>\:{k}^{\mathrm{2}} \\ $$$$\forall{k}\in\mathbb{N}^{\ast} ,\:\left({k}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} \:>\:{k}^{\mathrm{6}} \\ $$$$\forall{k}\in\mathbb{N}^{\ast} ,\:\frac{\mathrm{1}}{\left({k}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }\:<\:\frac{\mathrm{1}}{{k}^{\mathrm{6}} } \\ $$$$\forall{k}\in\mathbb{N}^{\ast} ,\:\frac{{k}}{\left({k}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }\:<\:\frac{\mathrm{1}}{{k}^{\mathrm{5}} } \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{k}}{\left({k}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }\:<\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{5}} } \\ $$$$\mathrm{And}\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{5}} }\:\mathrm{converges}. \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{5}} }\:=\:\zeta\left(\mathrm{5}\right)\:\approx\:\mathrm{1},\mathrm{037} \\ $$$$\Rightarrow\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{k}}{\left({k}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }\:\mathrm{converges}. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *