Menu Close

Question-119327




Question Number 119327 by help last updated on 23/Oct/20
Answered by TANMAY PANACEA last updated on 23/Oct/20
x^4 +x^3 −9x^2 +x+10=f(x)  f(2)=16+8−36+2+10=0  (x−2) is a factor  x^4 +x^3 −9x^2 +x+10  =x^4 −2x^3 +3x^3 −6x^2 −3x^2 +6x−5x+10  =x^3 (x−2)+3x^2    (x−2) −3x  (x−2) −5 (x−2)  =(x−2)(x^3 +3x^2 −3x−5)
$${x}^{\mathrm{4}} +{x}^{\mathrm{3}} −\mathrm{9}{x}^{\mathrm{2}} +{x}+\mathrm{10}={f}\left({x}\right) \\ $$$${f}\left(\mathrm{2}\right)=\mathrm{16}+\mathrm{8}−\mathrm{36}+\mathrm{2}+\mathrm{10}=\mathrm{0} \\ $$$$\left({x}−\mathrm{2}\right)\:{is}\:{a}\:{factor} \\ $$$${x}^{\mathrm{4}} +{x}^{\mathrm{3}} −\mathrm{9}{x}^{\mathrm{2}} +{x}+\mathrm{10} \\ $$$$={x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{3}} −\mathrm{6}{x}^{\mathrm{2}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{6}{x}−\mathrm{5}{x}+\mathrm{10} \\ $$$$={x}^{\mathrm{3}} \left({x}−\mathrm{2}\right)+\mathrm{3}{x}^{\mathrm{2}} \:\:\:\left({x}−\mathrm{2}\right)\:−\mathrm{3}{x}\:\:\left({x}−\mathrm{2}\right)\:−\mathrm{5}\:\left({x}−\mathrm{2}\right) \\ $$$$=\left({x}−\mathrm{2}\right)\left({x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{5}\right) \\ $$$$ \\ $$
Answered by MJS_new last updated on 23/Oct/20
x^4 +x^3 −9x^2 +x+10=0  try all factors of the constant ±{1, 2, 5, 10}  ⇒  (x+1)(x−2)(x^2 +2x−5)=0  ⇒  (x+1)(x−2)(x+1+(√6))(x+1−(√6))
$${x}^{\mathrm{4}} +{x}^{\mathrm{3}} −\mathrm{9}{x}^{\mathrm{2}} +{x}+\mathrm{10}=\mathrm{0} \\ $$$$\mathrm{try}\:\mathrm{all}\:\mathrm{factors}\:\mathrm{of}\:\mathrm{the}\:\mathrm{constant}\:\pm\left\{\mathrm{1},\:\mathrm{2},\:\mathrm{5},\:\mathrm{10}\right\} \\ $$$$\Rightarrow \\ $$$$\left({x}+\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{5}\right)=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\left({x}+\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}+\mathrm{1}+\sqrt{\mathrm{6}}\right)\left({x}+\mathrm{1}−\sqrt{\mathrm{6}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *