Question Number 119548 by benjo_mathlover last updated on 25/Oct/20
Commented by benjo_mathlover last updated on 25/Oct/20
$$\:{If}\:\mathrm{cos}\:{A}\:=\:\mathrm{tan}\:{B}\:,\:\mathrm{cos}\:{B}\:=\:\mathrm{tan}\:{C}\:{and}\: \\ $$$$\mathrm{cos}\:{C}\:=\:\mathrm{tan}\:{A}\:,\:{then}\:\mathrm{sin}\:{A}\:{is}\:{equal}\:{to} \\ $$
Commented by TANMAY PANACEA last updated on 25/Oct/20
$${cos}^{\mathrm{2}} {A}={tan}^{\mathrm{2}} {B}={sec}^{\mathrm{2}} {B}−\mathrm{1} \\ $$$$\:\:\:\:{cos}^{\mathrm{2}} {A}=\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {B}}−\mathrm{1} \\ $$$${cos}^{\mathrm{2}} {A}=\frac{\mathrm{1}}{{tan}^{\mathrm{2}} {C}}−\mathrm{1}\:\:\left[{given}\:\:\:{cosB}={tanC}\right] \\ $$$${cos}^{\mathrm{2}} {A}=\frac{\mathrm{1}}{{sec}^{\mathrm{2}} {C}−\mathrm{1}}−\mathrm{1}=\frac{\mathrm{1}}{\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {C}}−\mathrm{1}}−\mathrm{1}=\frac{{cos}^{\mathrm{2}} {C}}{\mathrm{1}−{cos}^{\mathrm{2}} {C}}−\mathrm{1} \\ $$$${cos}^{\mathrm{2}} {A}=\frac{{cos}^{\mathrm{2}} {C}−\mathrm{1}+{cos}^{\mathrm{2}} {C}}{\mathrm{1}−{cos}^{\mathrm{2}} {C}}=\frac{\mathrm{2}{tan}^{\mathrm{2}} {A}−\mathrm{1}}{\mathrm{1}−{tan}^{\mathrm{2}} {A}} \\ $$$${cos}^{\mathrm{2}} {A}=\frac{\mathrm{2}{sin}^{\mathrm{2}} {A}−{cos}^{\mathrm{2}} {A}}{{cos}^{\mathrm{2}} {A}−{sin}^{\mathrm{2}} {A}} \\ $$$${sinA}={k} \\ $$$$\mathrm{1}−{k}^{\mathrm{2}} =\frac{\mathrm{2}{k}^{\mathrm{2}} −\left(\mathrm{1}−{k}^{\mathrm{2}} \right)}{\left(\mathrm{1}−{k}^{\mathrm{2}} \right)−{k}^{\mathrm{2}} }=\frac{\mathrm{3}{k}^{\mathrm{2}} −\mathrm{1}}{\mathrm{1}−\mathrm{2}{k}^{\mathrm{2}} } \\ $$$${k}^{\mathrm{2}} =\mathrm{1}−\frac{\mathrm{3}{k}^{\mathrm{2}} −\mathrm{1}}{\mathrm{1}−\mathrm{2}{k}^{\mathrm{2}} }=\frac{\mathrm{1}−\mathrm{2}{k}^{\mathrm{2}} −\mathrm{3}{k}^{\mathrm{2}} +\mathrm{1}}{\mathrm{1}−\mathrm{2}{k}^{\mathrm{2}} } \\ $$$${k}^{\mathrm{2}} −\mathrm{2}{k}^{\mathrm{4}} =\mathrm{2}−\mathrm{5}{k}^{\mathrm{2}} \\ $$$$\mathrm{2}{k}^{\mathrm{4}} −\mathrm{6}{k}^{\mathrm{2}} +\mathrm{2}=\mathrm{0} \\ $$$${k}^{\mathrm{4}} −\mathrm{3}{k}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$${k}^{\mathrm{2}} =\frac{\mathrm{3}\pm\sqrt{\mathrm{9}−\mathrm{4}}}{\mathrm{2}}=\frac{\mathrm{3}\pm\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${k}^{\mathrm{2}} =\frac{\mathrm{6}\pm\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{4}}=\left(\frac{\sqrt{\mathrm{5}}\:\pm\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${k}={sinA}=\frac{\sqrt{\mathrm{5}}\:−\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Answered by bemath last updated on 25/Oct/20
$${let}\:\mathrm{sin}\:{A}\:=\:{k}\:=\:\mathrm{tan}\:{B} \\ $$$$\rightarrow\begin{cases}{\mathrm{tan}\:{A}=\frac{{k}}{\:\sqrt{\mathrm{1}−{k}^{\mathrm{2}} }}}\\{\mathrm{cos}\:{B}\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{k}^{\mathrm{2}} }}\:=\:\mathrm{tan}\:{C}}\end{cases} \\ $$$$\rightarrow\:\mathrm{cos}\:{A}\:\mathrm{cos}\:{B}\:=\:\mathrm{sin}\:{B} \\ $$$$\rightarrow\:\mathrm{cos}\:{B}\:\mathrm{cos}\:{C}\:=\:\mathrm{sin}\:{C} \\ $$$$\rightarrow\:\mathrm{cos}\:{A}\:\mathrm{cos}\:{C}\:=\:\mathrm{sin}\:{A} \\ $$$$\left(\mathrm{1}\right)×\left(\mathrm{2}\right)×\left(\mathrm{3}\right)\: \\ $$$$\rightarrow\left(\mathrm{cos}\:{A}\:\mathrm{cos}\:{B}\:\mathrm{cos}\:{C}\:\right)^{\mathrm{2}} \:=\:\mathrm{sin}\:{A}\:\mathrm{sin}\:{B}\:\mathrm{sin}\:{C} \\ $$$$\left(\sqrt{\mathrm{1}−{k}^{\mathrm{2}} }\:.\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{k}^{\mathrm{2}} }}.\:\frac{\sqrt{\mathrm{1}+{k}^{\mathrm{2}} }}{\:\sqrt{\mathrm{2}+{k}^{\mathrm{2}} }}\:\right)^{\mathrm{2}} =\:{k}.\frac{{k}}{\:\sqrt{\mathrm{1}+{k}^{\mathrm{2}} }}.\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+{k}^{\mathrm{2}} }} \\ $$$$\rightarrow\:\frac{\mathrm{1}−{k}^{\mathrm{2}} }{\mathrm{2}+{k}^{\mathrm{2}} }\:=\:\frac{{k}^{\mathrm{2}} }{\left.\:\sqrt{\left(\mathrm{1}+{k}^{\mathrm{2}} \right)\left(\mathrm{2}+{k}^{\mathrm{2}} \right.}\right)} \\ $$$${let}\:{k}^{\mathrm{2}} \:=\:{u} \\ $$$$\sqrt{\left(\mathrm{2}+{u}\right)\left(\mathrm{1}+{u}\right)}\:=\:\frac{\left(\mathrm{2}+{u}\right){u}}{\mathrm{1}−{u}} \\ $$$$\left(\mathrm{2}+{u}\right)\left(\mathrm{1}+{u}\right)=\:\frac{{u}^{\mathrm{2}} \left(\mathrm{2}+{u}\right)^{\mathrm{2}} }{\left(\mathrm{1}−{u}\right)^{\mathrm{2}} } \\ $$$$\left(\mathrm{2}+{u}\right)\left\{\left(\mathrm{1}+{u}\right)\left(\mathrm{1}−{u}\right)^{\mathrm{2}} −{u}^{\mathrm{2}} \left(\mathrm{2}+{u}\right)\right\}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{2}+{u}\right)\left\{\:\left(\mathrm{1}−{u}^{\mathrm{2}} \right)\left(\mathrm{1}−{u}\right)−\mathrm{2}{u}^{\mathrm{2}} −{u}^{\mathrm{3}} \:\right\}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{2}+{u}\right)\:\left\{\:\mathrm{1}−{u}−{u}^{\mathrm{2}} +{u}^{\mathrm{3}} −\mathrm{2}{u}^{\mathrm{2}} −{u}^{\mathrm{3}} \:\right\}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{2}+{u}\right)\:\left\{\:\mathrm{1}−{u}−\mathrm{3}{u}^{\mathrm{2}} \:\right\}\:=\:\mathrm{0} \\ $$$${u}=−\mathrm{2}\:\leftarrow{rejected} \\ $$$$\rightarrow\:\mathrm{3}{u}^{\mathrm{2}} +{u}−\mathrm{1}\:=\:\mathrm{0}\: \\ $$$$\Rightarrow\:{u}\:=\:\frac{−\mathrm{1}+\sqrt{\mathrm{13}}}{\mathrm{6}}\:=\:{k}^{\mathrm{2}} \\ $$$${k}\:=\:\sqrt{\frac{\sqrt{\mathrm{13}}−\mathrm{1}}{\mathrm{6}}} \\ $$$$ \\ $$$$ \\ $$