Question-119565 Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 119565 by bemath last updated on 25/Oct/20 Commented by bemath last updated on 25/Oct/20 gavekudos Answered by TANMAY PANACEA last updated on 25/Oct/20 y=log7(x+6x+6)ln7y=ln7×ln(x+6x−6)ln7[logab=logbloga)y=ln(x+6)−ln(x−6)dydx=1x+6−1x−6=x−6−x−6(x+6)(x−6)dydx=−12(x+6)(x−6) Answered by Ar Brandon last updated on 25/Oct/20 y=log7[(x+6x−6)ln7]7y=(x+6x−6)ln7=(1+12x−6)ln7⇒7yln7dydx=−ln712(x−6)2(x+6x−6)ln7−1⇒7ydydx=−12(x−6)(x+6)(x+6x−6)ln7⇒dydx=−12(x−6)(x+6) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: The-points-A-B-C-D-have-coordinates-7-9-3-4-1-12-and-2-9-find-the-length-of-the-linePQ-where-P-devides-AB-in-the-ratio-2-3-and-devides-CD-in-the-ratio-1-4-Next Next post: 1-x-d-2-y-dx-2-x-dy-dx-xy-1-1-x-x-1-has-power-series-solution-for-x-lt-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.