Menu Close

Question-119618




Question Number 119618 by help last updated on 25/Oct/20
Answered by ebi last updated on 25/Oct/20
Option 1  Quarryton−Richfield−Bayview−Quarryton  Quarryton−Richfield→3ways  Richfield−Bayview→2ways  Bayview−Quarryton→1ways  Total of possible waysfor option 1=6ways    Option 2  Quarryton−Bayview−Richfield−Quarryton  Quarryton−Bayview→1way  Bayview−Richfield→2ways  Richfield−Quarryton→3ways  Total of possible ways option 2=6ways    Overall possible ways=12ways
$${Option}\:\mathrm{1} \\ $$$${Quarryton}−{Richfield}−{Bayview}−{Quarryton} \\ $$$${Quarryton}−{Richfield}\rightarrow\mathrm{3}{ways} \\ $$$${Richfield}−{Bayview}\rightarrow\mathrm{2}{ways} \\ $$$${Bayview}−{Quarryton}\rightarrow\mathrm{1}{ways} \\ $$$${Total}\:{of}\:{possible}\:{waysfor}\:{option}\:\mathrm{1}=\mathrm{6}{ways} \\ $$$$ \\ $$$${Option}\:\mathrm{2} \\ $$$${Quarryton}−{Bayview}−{Richfield}−{Quarryton} \\ $$$${Quarryton}−{Bayview}\rightarrow\mathrm{1}{way} \\ $$$${Bayview}−{Richfield}\rightarrow\mathrm{2}{ways} \\ $$$${Richfield}−{Quarryton}\rightarrow\mathrm{3}{ways} \\ $$$${Total}\:{of}\:{possible}\:{ways}\:{option}\:\mathrm{2}=\mathrm{6}{ways} \\ $$$$ \\ $$$${Overall}\:{possible}\:{ways}=\mathrm{12}{ways} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *