Menu Close

Question-119733




Question Number 119733 by bemath last updated on 26/Oct/20
Commented by bemath last updated on 26/Oct/20
many choices of a person′s path  from A to B
$${many}\:{choices}\:{of}\:{a}\:{person}'{s}\:{path} \\ $$$${from}\:{A}\:{to}\:{B} \\ $$
Commented by MJS_new last updated on 26/Oct/20
we need more info. each point allowed  once or...?  without restrictions the number is ∞  (I could walk around the inner square 1, 2, ...  times)
$$\mathrm{we}\:\mathrm{need}\:\mathrm{more}\:\mathrm{info}.\:\mathrm{each}\:\mathrm{point}\:\mathrm{allowed} \\ $$$$\mathrm{once}\:\mathrm{or}…? \\ $$$$\mathrm{without}\:\mathrm{restrictions}\:\mathrm{the}\:\mathrm{number}\:\mathrm{is}\:\infty \\ $$$$\left(\mathrm{I}\:\mathrm{could}\:\mathrm{walk}\:\mathrm{around}\:\mathrm{the}\:\mathrm{inner}\:\mathrm{square}\:\mathrm{1},\:\mathrm{2},\:…\right. \\ $$$$\left.\mathrm{times}\right) \\ $$
Commented by soumyasaha last updated on 26/Oct/20
    ((6!)/(3!.3!)) = 20
$$ \\ $$$$\:\:\frac{\mathrm{6}!}{\mathrm{3}!.\mathrm{3}!}\:=\:\mathrm{20} \\ $$
Commented by bemath last updated on 26/Oct/20
how got it sir?
$${how}\:{got}\:{it}\:{sir}? \\ $$
Commented by bemath last updated on 26/Oct/20
mjs sir. the question only   like that
$${mjs}\:{sir}.\:{the}\:{question}\:{only}\: \\ $$$${like}\:{that} \\ $$
Answered by mr W last updated on 26/Oct/20
we have unique solution only if it  is restricted that we move upwards or  rightwards only.  we have 3 upwards steps and 3  rightwards steps. each arrangement  is a path. so tatally we have  ((6!)/(3!3!))=20 pathes.
$${we}\:{have}\:{unique}\:{solution}\:{only}\:{if}\:{it} \\ $$$${is}\:{restricted}\:{that}\:{we}\:{move}\:{upwards}\:{or} \\ $$$${rightwards}\:{only}. \\ $$$${we}\:{have}\:\mathrm{3}\:{upwards}\:{steps}\:{and}\:\mathrm{3} \\ $$$${rightwards}\:{steps}.\:{each}\:{arrangement} \\ $$$${is}\:{a}\:{path}.\:{so}\:{tatally}\:{we}\:{have} \\ $$$$\frac{\mathrm{6}!}{\mathrm{3}!\mathrm{3}!}=\mathrm{20}\:{pathes}. \\ $$
Commented by bemath last updated on 27/Oct/20
Commented by bemath last updated on 27/Oct/20
agree sir. this question un complete
$${agree}\:{sir}.\:{this}\:{question}\:{un}\:{complete} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *