Question Number 119928 by peter frank last updated on 28/Oct/20
Answered by bramlexs22 last updated on 28/Oct/20
$${mx}\:=\:{y}−\left(\frac{\mathrm{3}{m}^{\mathrm{2}} +\mathrm{4}}{\mathrm{4}{m}}\right) \\ $$$$\:{x}\:=\:\frac{{y}}{{m}}−\left(\frac{\mathrm{3}{m}^{\mathrm{2}} +\mathrm{4}}{\mathrm{4}{m}^{\mathrm{2}} }\right)\:\leftarrow{substitute} \\ $$$${to}\:{quadratic}\:{function}\:{give} \\ $$$${y}^{\mathrm{2}} =\mathrm{4}\left(\frac{{y}}{{m}}−\left(\frac{\mathrm{3}{m}^{\mathrm{2}} +\mathrm{4}}{\mathrm{4}{m}^{\mathrm{2}} }\right)\right)+\mathrm{3} \\ $$$${y}^{\mathrm{2}} =\frac{\mathrm{4}{y}}{{m}}−\left(\frac{\mathrm{3}{m}^{\mathrm{2}} +\mathrm{4}}{{m}^{\mathrm{2}} }\right)+\mathrm{3} \\ $$$${m}^{\mathrm{2}} {y}^{\mathrm{2}} =\mathrm{4}{my}+\mathrm{3}{m}^{\mathrm{2}} −\mathrm{3}{m}^{\mathrm{2}} −\mathrm{4} \\ $$$${m}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{4}{my}+\mathrm{4}=\mathrm{0} \\ $$$${discriminant}\:=\:\mathrm{0} \\ $$$$\Leftrightarrow\:\mathrm{16}{m}^{\mathrm{2}} −\mathrm{4}\left({m}^{\mathrm{2}} \right)\left(\mathrm{4}\right)=\mathrm{0} \\ $$$${for}\:\forall{m}\in\mathbb{R},\:{m}\neq\mathrm{0} \\ $$
Commented by peter frank last updated on 28/Oct/20
$$\mathrm{thank}\:\mathrm{you} \\ $$
Answered by 1549442205PVT last updated on 29/Oct/20
$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\left(\mathrm{mx}+\frac{\mathrm{3}}{\mathrm{4}}\mathrm{m}+\frac{\mathrm{1}}{\mathrm{m}}\right)^{\mathrm{2}} =\mathrm{4x}+\mathrm{3} \\ $$$$\Leftrightarrow\left(\mathrm{4m}^{\mathrm{2}} \mathrm{x}+\mathrm{3m}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} =\mathrm{64m}^{\mathrm{2}} \mathrm{x}+\mathrm{48m}^{\mathrm{2}} \\ $$$$\Leftrightarrow\mathrm{16m}^{\mathrm{4}} \mathrm{x}^{\mathrm{2}} +\mathrm{2m}^{\mathrm{2}} \left(\mathrm{12m}^{\mathrm{2}} −\mathrm{16}\right)\mathrm{x} \\ $$$$+\mathrm{9m}^{\mathrm{4}} −\mathrm{24m}^{\mathrm{2}} +\mathrm{16}=\mathrm{0} \\ $$$$\Delta'=\mathrm{m}^{\mathrm{4}} \left(\mathrm{12m}^{\mathrm{2}} −\mathrm{16}\right)^{\mathrm{2}} −\mathrm{16m}^{\mathrm{4}} \left(\mathrm{9m}^{\mathrm{4}} −\mathrm{24m}^{\mathrm{2}} +\mathrm{16}\right) \\ $$$$=\mathrm{m}^{\mathrm{4}} \left[\mathrm{144m}^{\mathrm{4}} −\mathrm{384m}^{\mathrm{2}} +\mathrm{256}−\mathrm{144m}^{\mathrm{4}} +\mathrm{384m}^{\mathrm{2}} −\mathrm{256}\right) \\ $$$$=\mathrm{0}.\mathrm{Hence}\:\mathrm{this}\:\mathrm{equation}\:\mathrm{is}\:\mathrm{always}\:\mathrm{has} \\ $$$$\mathrm{solution}\:\mathrm{x}_{\mathrm{0}} =−\frac{\mathrm{12m}^{\mathrm{2}} −\mathrm{16}}{\mathrm{16m}^{\mathrm{2}} }=−\frac{\mathrm{3m}^{\mathrm{2}} −\mathrm{4}}{\mathrm{4m}^{\mathrm{2}} }\:\forall\mathrm{m}\neq\mathrm{0} \\ $$$$\mathrm{y}_{\mathrm{0}} =\frac{−\mathrm{3m}^{\mathrm{2}} +\mathrm{4}+\mathrm{3m}^{\mathrm{2}} +\mathrm{4}}{\mathrm{4m}}=\frac{\mathrm{2}}{\mathrm{m}} \\ $$$$\left(\mathrm{x}_{\mathrm{0}} ,\mathrm{y}_{\mathrm{0}} \right)\mathrm{is}\:\mathrm{tangent}\:\mathrm{point}\:\forall\mathrm{m}\neq\mathrm{0} \\ $$