Question Number 119969 by huotpat last updated on 28/Oct/20
Answered by Dwaipayan Shikari last updated on 28/Oct/20
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{k}^{\mathrm{2}} +{k}+\mathrm{1}} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}{tan}^{−\mathrm{1}} \frac{\left({k}+\mathrm{1}\right)−{k}}{\mathrm{1}+{k}\left({k}+\mathrm{1}\right)} \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{tan}^{−\mathrm{1}} \left({k}+\mathrm{1}\right)−{tan}^{−\mathrm{1}} \left({k}\right) \\ $$$$={tan}^{−\mathrm{1}} \mathrm{2}−{tan}^{−\mathrm{1}} \mathrm{1}+{tan}^{−\mathrm{1}} \mathrm{3}−{tan}^{−\mathrm{1}} \mathrm{2}+…+{tan}^{−\mathrm{1}} \left({n}+\mathrm{1}\right)−{tan}^{−\mathrm{1}} \left({n}\right) \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left({tan}^{−\mathrm{1}} \left({n}+\mathrm{1}\right)−{tan}^{−\mathrm{1}} \mathrm{1}\right)=\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{4}}=\frac{\pi}{\mathrm{4}} \\ $$