Question Number 120028 by Don08q last updated on 28/Oct/20
Answered by bramlexs22 last updated on 29/Oct/20
$$\left({a}\right)\:{say}\:{three}\:{particular}\:{women}\:{is}\:\begin{cases}{{w}_{\mathrm{1}} }\\{{w}_{\mathrm{2}} }\\{{w}_{\mathrm{3}} }\end{cases} \\ $$$$\blacksquare={woman}\:{particular} \\ $$$$\Box=\:{the}\:{other}\:{person} \\ $$$$\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\Rightarrow{C}\:_{\mathrm{3}} ^{\mathrm{5}} ×{C}\:_{\mathrm{3}} ^{\mathrm{4}} ×\mathrm{3}!×\mathrm{5}!\: \\ $$$$=\:\mathrm{10}×\mathrm{3}×\mathrm{6}×\mathrm{120} \\ $$$$=\mathrm{180}×\mathrm{120}=\mathrm{21},\mathrm{600} \\ $$$$ \\ $$
Answered by mr W last updated on 29/Oct/20
$$\left({a}\right) \\ $$$$\Box{M}\Box{M}\Box{M}\Box{W}\Box{W}\Box \\ $$$$\Box={place}\:{for}\:{three}\:{particular}\:{wemen} \\ $$$${C}_{\mathrm{3}} ^{\mathrm{6}} ×\mathrm{3}!×\mathrm{5}!=\mathrm{14}\:\mathrm{400} \\ $$$$ \\ $$$$\left({b}\right) \\ $$$$\Box{M}\blacksquare{M}\blacksquare{M}\Box \\ $$$$\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +…\right)^{\mathrm{2}} \left({x}+{x}+{x}^{\mathrm{3}} +…\right)^{\mathrm{2}} \\ $$$$=\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{4}} }={x}^{\mathrm{2}} \underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{3}} ^{{k}+\mathrm{3}} {x}^{{k}} \\ $$$${k}=\mathrm{3},\:{C}_{\mathrm{3}} ^{\mathrm{6}} \\ $$$$\Rightarrow{C}_{\mathrm{3}} ^{\mathrm{6}} ×\mathrm{3}!×\mathrm{5}!=\mathrm{14}\:\mathrm{400} \\ $$$$ \\ $$$$\left({c}\right) \\ $$$$\frac{\left(\mathrm{8}−\mathrm{1}\right)!}{\mathrm{2}}=\frac{\mathrm{7}!}{\mathrm{2}}=\mathrm{2520} \\ $$
Commented by bramlexs22 last updated on 29/Oct/20
$$\left({a}\right)\:{how}\:{do}\:{you}\:{choice}\:\mathrm{3}\:{woman}\:{particular} \\ $$$${from}\:\mathrm{5}\:{woman}\:? \\ $$
Commented by mr W last updated on 29/Oct/20
$${they}\:{are}\:{three}\:{particular}\:{wowen}. \\ $$$${we}\:{should}\:{not}\:{choose}\:{them}. \\ $$
Commented by bramlexs22 last updated on 29/Oct/20
$${oo}\:{it}\:{does}\:{meant}\:{the}\:{three}\:{woman} \\ $$$${particular}\:{fix}\:? \\ $$
Commented by mr W last updated on 29/Oct/20
$${yes}.\:{let}'{s}\:{say}\:{the}\:{wemen}\:{are}\:{A},{B},{C},{D},{E}. \\ $$$${the}\:{three}\:{particular}\:{wemen}\:{are} \\ $$$${A},{B},{C}.\:{they}\:{are}\:{fixed}. \\ $$
Commented by Don08q last updated on 29/Oct/20
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir},\:{but}\:{why}\:\:^{\mathrm{6}} \mathrm{C}_{\mathrm{3}} \:{and}\:{not}\:\:^{\mathrm{6}} \mathrm{P}_{\mathrm{3}} \: \\ $$
Commented by mr W last updated on 29/Oct/20
$$\mathrm{C}_{\mathrm{3}} ^{\mathrm{6}} ×\mathrm{3}!=\mathrm{P}_{\mathrm{3}} ^{\mathrm{6}} \: \\ $$
Commented by Don08q last updated on 29/Oct/20
$$\:\mathrm{OK}.\:\mathrm{Thank}\:\mathrm{you} \\ $$