Menu Close

Question-120258




Question Number 120258 by bramlexs22 last updated on 30/Oct/20
Answered by TANMAY PANACEA last updated on 30/Oct/20
p^→ =pcosa i+psina j  q^→ =qcosb i−qsinb j  p^→ .q^→ =(pcosa i+psina j).(qcosb i−qsinb j)  pqcosacosb (i.i)−pqcosasinb i.j+pqsincosbj.i−pqsinasinb (j.j)  i.i=1   j.j=1   i.j=0   j.i=0    =pq(cosacosb−sinasinb)  again  p^→ .q^→ =pqcos(a+b)  so   pqcos(a+b)=pa(cosacosb−sinasinb)  cos(a+b)=cosacosb−sinasinb
$$\overset{\rightarrow} {{p}}={pcosa}\:{i}+{psina}\:{j} \\ $$$$\overset{\rightarrow} {{q}}={qcosb}\:{i}−{qsinb}\:{j} \\ $$$$\overset{\rightarrow} {{p}}.\overset{\rightarrow} {{q}}=\left({pcosa}\:{i}+{psina}\:{j}\right).\left({qcosb}\:{i}−{qsinb}\:{j}\right) \\ $$$${pqcosacosb}\:\left({i}.{i}\right)−{pqcosasinb}\:{i}.{j}+{pqsincosbj}.{i}−{pqsinasinb}\:\left({j}.{j}\right) \\ $$$${i}.{i}=\mathrm{1}\:\:\:{j}.{j}=\mathrm{1}\:\:\:{i}.{j}=\mathrm{0}\:\:\:{j}.{i}=\mathrm{0}\:\: \\ $$$$={pq}\left({cosacosb}−{sinasinb}\right) \\ $$$${again} \\ $$$$\overset{\rightarrow} {{p}}.\overset{\rightarrow} {{q}}={pqcos}\left({a}+{b}\right) \\ $$$${so}\: \\ $$$${pqcos}\left({a}+{b}\right)={pa}\left({cosacosb}−{sinasinb}\right) \\ $$$${cos}\left({a}+{b}\right)={cosacosb}−{sinasinb} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *