Menu Close

Question-120284




Question Number 120284 by Algoritm last updated on 30/Oct/20
Commented by Algoritm last updated on 30/Oct/20
x=?
$$\mathrm{x}=? \\ $$
Answered by TITA last updated on 30/Oct/20
(x+(1/x))^(x+1) =(1+(1/(2017)))^(2018) ⇒(x+(1/x))^(x+1) =x^(x+1) (1+(1/x^2 ))^(x+1)   by equating coefficient   x^(x+1) =1    ⇒(x+1)ln x=ln 1  ⇒ln x=0  hence  x=1  x^2 =2017⇒x= +_− (√(2017))  x+1=2018 ⇒ x=2017  hence x={1,2017, +_− (√(2017 ))}
$$\left({x}+\frac{\mathrm{1}}{{x}}\right)^{{x}+\mathrm{1}} =\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2017}}\right)^{\mathrm{2018}} \Rightarrow\left({x}+\frac{\mathrm{1}}{{x}}\right)^{{x}+\mathrm{1}} ={x}^{{x}+\mathrm{1}} \left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{{x}+\mathrm{1}} \\ $$$${by}\:{equating}\:{coefficient}\: \\ $$$${x}^{{x}+\mathrm{1}} =\mathrm{1}\:\:\:\:\Rightarrow\left({x}+\mathrm{1}\right)\mathrm{ln}\:{x}=\mathrm{ln}\:\mathrm{1} \\ $$$$\Rightarrow\mathrm{ln}\:{x}=\mathrm{0}\:\:{hence}\:\:{x}=\mathrm{1} \\ $$$${x}^{\mathrm{2}} =\mathrm{2017}\Rightarrow{x}=\:\underset{−} {+}\sqrt{\mathrm{2017}} \\ $$$${x}+\mathrm{1}=\mathrm{2018}\:\Rightarrow\:{x}=\mathrm{2017} \\ $$$${hence}\:{x}=\left\{\mathrm{1},\mathrm{2017},\:\underset{−} {+}\sqrt{\mathrm{2017}\:}\right\} \\ $$
Commented by JDamian last updated on 30/Oct/20
Would you mind explaining how  (1+(1/1))^(1+1) =(1+(1/(2017)))^(2018) ?
$${Would}\:{you}\:{mind}\:{explaining}\:{how} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}}\right)^{\mathrm{1}+\mathrm{1}} =\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2017}}\right)^{\mathrm{2018}} ? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *