Question Number 120295 by A8;15: last updated on 30/Oct/20
Commented by TANMAY PANACEA last updated on 30/Oct/20
Answered by Dwaipayan Shikari last updated on 30/Oct/20
$$\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}{n}^{\mathrm{7}} =\frac{\mathrm{1}}{\mathrm{24}}{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{3}{n}^{\mathrm{4}} +\mathrm{6}{n}^{\mathrm{3}} −{n}^{\mathrm{2}} −\mathrm{4}{n}+\mathrm{2}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{24}}\left(\mathrm{3}{n}^{\mathrm{8}} +\mathrm{12}{n}^{\mathrm{7}} +\mathrm{14}{n}^{\mathrm{6}} −\mathrm{7}{n}^{\mathrm{4}} +\mathrm{2}{n}^{\mathrm{2}} \right) \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{8}} }{\mathrm{8}{n}!}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{7}} }{\mathrm{2}{n}!}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{7}{n}^{\mathrm{6}} }{\mathrm{12}{n}!}−\frac{\mathrm{7}}{\mathrm{24}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{4}} }{{n}!}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} }{\mathrm{12}{n}!} \\ $$$$=\frac{\mathrm{4140}}{\mathrm{8}}{e}+\frac{\mathrm{877}}{\mathrm{2}}{e}+\frac{\mathrm{1421}}{\mathrm{12}}{e}−\frac{\mathrm{105}}{\mathrm{24}}{e}+\frac{\mathrm{1}}{\mathrm{6}}{e} \\ $$
Commented by A8;15: last updated on 30/Oct/20
what about factorials, (n+1)⁷/n! ?
Commented by A8;15: last updated on 30/Oct/20
Sorry 1⁷/1! or (1⁷+2⁷)/2! or (1⁷+2⁷+3⁷)/3! ?
Commented by Dwaipayan Shikari last updated on 30/Oct/20
$${T}_{{n}} =\frac{\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}{n}^{\mathrm{7}} }{{n}!} \\ $$$${And}\:{Sum}\:{is} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{3}{n}^{\mathrm{8}} +\mathrm{12}{n}^{\mathrm{7}} +\mathrm{14}{n}^{\mathrm{6}} −\mathrm{7}{n}^{\mathrm{4}} +\mathrm{2}{n}^{\mathrm{2}} \right)}{\mathrm{24}{n}!}\:{Which}\:{is}\:{the}\:{above}\:{result} \\ $$
Commented by Dwaipayan Shikari last updated on 30/Oct/20
$${Generally} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}!}={e}^{{x}} −\mathrm{1} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}−\mathrm{1}} {n}}{{n}!}={e}^{{x}\:\:} \:\:\:\:\:\left({When}\:{x}=\mathrm{1}\:\overset{\infty} {\sum}\frac{{n}}{{n}!}={e}\right) \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}−\mathrm{1}} {n}\left({n}−\mathrm{1}\right)}{{n}!}={e}^{{x}} \left(\:{When}\:{x}=\mathrm{1}\:\overset{\infty} {\sum}\frac{{n}^{\mathrm{2}} }{{n}!}=\overset{\infty} {\sum}\frac{{n}}{{n}!}+{e}=\mathrm{2}{e}\right) \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{3}} }{{n}!}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }{{n}!}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} }{{n}!}+\mathrm{2}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}}{{n}!}+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}=\mathrm{2}{e}+\mathrm{2}{e}+{e}=\mathrm{5}{e} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{4}} }{{n}!}=\mathrm{15}{e} \\ $$$$…. \\ $$$$. \\ $$$$. \\ $$$$. \\ $$