Menu Close

Question-120541




Question Number 120541 by 77731 last updated on 01/Nov/20
Answered by snipers237 last updated on 01/Nov/20
Using  cos(z)=Σ_(n=0) ^∞ (((−1)^n z^(2n) )/((2n)!)) , 1−cosz=Σ_(n=1) ^∞ (((−1)^n z^(2n) )/((2n)!))   ∣1−cosz∣≤ Σ_(n=1) ^∞ ∣(((−1)^n z^(2n) )/((2n)!))∣=Σ_(n=1) ((∣z∣^(2n) )/((2n)!))  ∣1−cosz∣≤ ∣z∣^2 Σ_(p=0) ((∣z∣^(2p) )/((2p+2)! ))≤((∣z∣^2 )/2)Σ_(p=0) ^∞ ((∣z∣^(2p) )/((2p)!))     cause  (2p+2)≥2  Observes that  e^(∣z∣) =Σ_(p=0) ^∞ ((∣z∣^(2p) )/((2p)!)) +Σ_(p=0) ^∞ ((∣z∣^(2p+1) )/((2p+1)!)) ≥Σ_(p≥0) ((∣z∣^(2p) )/((2p)!))    LFYTC
$${Using}\:\:{cos}\left({z}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {z}^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}\right)!}\:,\:\mathrm{1}−{cosz}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {z}^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}\right)!}\: \\ $$$$\mid\mathrm{1}−{cosz}\mid\leqslant\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mid\frac{\left(−\mathrm{1}\right)^{{n}} {z}^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}\right)!}\mid=\underset{{n}=\mathrm{1}} {\sum}\frac{\mid{z}\mid^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}\right)!} \\ $$$$\mid\mathrm{1}−{cosz}\mid\leqslant\:\mid{z}\mid^{\mathrm{2}} \underset{{p}=\mathrm{0}} {\sum}\frac{\mid{z}\mid^{\mathrm{2}{p}} }{\left(\mathrm{2}{p}+\mathrm{2}\right)!\:}\leqslant\frac{\mid{z}\mid^{\mathrm{2}} }{\mathrm{2}}\underset{{p}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mid{z}\mid^{\mathrm{2}{p}} }{\left(\mathrm{2}{p}\right)!}\:\:\:\:\:{cause}\:\:\left(\mathrm{2}{p}+\mathrm{2}\right)\geqslant\mathrm{2} \\ $$$${Observes}\:{that}\:\:{e}^{\mid{z}\mid} =\underset{{p}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mid{z}\mid^{\mathrm{2}{p}} }{\left(\mathrm{2}{p}\right)!}\:+\underset{{p}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mid{z}\mid^{\mathrm{2}{p}+\mathrm{1}} }{\left(\mathrm{2}{p}+\mathrm{1}\right)!}\:\geqslant\underset{{p}\geqslant\mathrm{0}} {\sum}\frac{\mid{z}\mid^{\mathrm{2}{p}} }{\left(\mathrm{2}{p}\right)!} \\ $$$$ \\ $$$${LFYTC} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *