Menu Close

Question-120631




Question Number 120631 by 77731 last updated on 01/Nov/20
Answered by mathmax by abdo last updated on 01/Nov/20
let determine a solution  at formy= Σ_(n=0) ^∞ a_n x^n   y^′  =Σ_(n=1) ^∞ na_n x^(n−1)  and y^(′′)  =Σ_(n=2) ^∞ n(n−1)a_n x^(n−2)   e ⇒2Σ_(n=2) ^∞ n(n−1)a_n x^(n−2) −(x−1)Σ_(n=0) ^∞  a_n x^n  =0 ⇒  2 Σ_(n=0) ^∞ (n+2)(n+1)a_(n+2) x^n −Σ_(n=0) ^∞ a_n x^(n+1) +Σ_(n=0) ^∞ a_n x^n  =0 ⇒  Σ_(n=0) ^∞ 2(n+1)(n+2)a_(n+2) x^n  −Σ_(n=1) ^∞ a_(n−1) x^n  +Σ_(n=0) ^∞ a_n x^n  =0 ⇒   { ((2(n+1)(n+2)a_(n+2) −a_(n−1) +a_n =0   ∀n≥1)),((4a_2 +a_0 =0)) :}  ⇒ { ((a_2 =−)),((2(n+1)(n+2)a_(n+2) =a_(n−1) −a_n )) :}  we have a_(n−1) −a_n =2(n+1)(n+2)a_(n+2)  ⇒  Σ_(k=1) ^n (a_(k−1) −a_k ) =2Σ_(k=1) ^n (k+1)(k+2)a_(k+2)  ⇒  a_0 −a_n =2 Σ_(k=1) ^n (k+1)(k+2)a_(k+2)  ⇒  a_n =a_0 −2Σ_(k=1) ^n (k+1)(k+2)a_(k+2) .....be contonued...
letdetermineasolutionatformy=n=0anxny=n=1nanxn1andy=n=2n(n1)anxn2e2n=2n(n1)anxn2(x1)n=0anxn=02n=0(n+2)(n+1)an+2xnn=0anxn+1+n=0anxn=0n=02(n+1)(n+2)an+2xnn=1an1xn+n=0anxn=0{2(n+1)(n+2)an+2an1+an=0n14a2+a0=0{a2=2(n+1)(n+2)an+2=an1anwehavean1an=2(n+1)(n+2)an+2k=1n(ak1ak)=2k=1n(k+1)(k+2)ak+2a0an=2k=1n(k+1)(k+2)ak+2an=a02k=1n(k+1)(k+2)ak+2..becontonued

Leave a Reply

Your email address will not be published. Required fields are marked *