Question-120631 Tinku Tara June 4, 2023 Others 0 Comments FacebookTweetPin Question Number 120631 by 77731 last updated on 01/Nov/20 Answered by mathmax by abdo last updated on 01/Nov/20 letdetermineasolutionatformy=∑n=0∞anxny′=∑n=1∞nanxn−1andy″=∑n=2∞n(n−1)anxn−2e⇒2∑n=2∞n(n−1)anxn−2−(x−1)∑n=0∞anxn=0⇒2∑n=0∞(n+2)(n+1)an+2xn−∑n=0∞anxn+1+∑n=0∞anxn=0⇒∑n=0∞2(n+1)(n+2)an+2xn−∑n=1∞an−1xn+∑n=0∞anxn=0⇒{2(n+1)(n+2)an+2−an−1+an=0∀n⩾14a2+a0=0⇒{a2=−2(n+1)(n+2)an+2=an−1−anwehavean−1−an=2(n+1)(n+2)an+2⇒∑k=1n(ak−1−ak)=2∑k=1n(k+1)(k+2)ak+2⇒a0−an=2∑k=1n(k+1)(k+2)ak+2⇒an=a0−2∑k=1n(k+1)(k+2)ak+2…..becontonued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-4-1-16-1-36-1-64-1-1-9-1-25-1-49-x-3x-2-2x-1-Next Next post: 2-2-tan-1-2-cos-x-2-x-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.