Menu Close

Question-120727




Question Number 120727 by 77731 last updated on 02/Nov/20
Answered by TANMAY PANACEA last updated on 02/Nov/20
N_r =2+2cosx−2cosnx−cos(n−1)x−cos(n+1)x  =2+2cosx−2cosnx−2cosnxcosx  =2(1+cosx)−2cosnx(1+cosx)  =2(1+cosx)(1−cosnx)  (N_r /D_r )=((2(1+cosx)(1−cosnx))/(1−cos2x))=((2(1+cosx)(1−cosnx))/(2sin^2 x))  I_n −I_(n−2) =∫_0 ^π (((1+cosx)/(sin^2 x)))({1−cosnx−1+cos(n−2)x} dx  =∫_0 ^π (((1+cosx)/(sin^2 x)))×2sin(n−1)xsinx  =∫_0 ^π ((1+cosx)/(sinx))×sin(n−1)xdx  =∫_0 ^π ((2cos^2 (x/2))/(2sin(x/2)cos(x/2)))×sin(n−1)xdx  =∫_0 ^π cot(x/2)×sin(n−1)xdx  I_n −I_(n−2) =∫_0 ^π cot(x/2)sin(n−1)xdx  wait...
Nr=2+2cosx2cosnxcos(n1)xcos(n+1)x=2+2cosx2cosnx2cosnxcosx=2(1+cosx)2cosnx(1+cosx)=2(1+cosx)(1cosnx)NrDr=2(1+cosx)(1cosnx)1cos2x=2(1+cosx)(1cosnx)2sin2xInIn2=0π(1+cosxsin2x)({1cosnx1+cos(n2)x}dx=0π(1+cosxsin2x)×2sin(n1)xsinx=0π1+cosxsinx×sin(n1)xdx=0π2cos2x22sinx2cosx2×sin(n1)xdx=0πcotx2×sin(n1)xdxInIn2=0πcotx2sin(n1)xdxwait

Leave a Reply

Your email address will not be published. Required fields are marked *