Question Number 120729 by help last updated on 02/Nov/20
Answered by TANMAY PANACEA last updated on 02/Nov/20
$${LHS} \\ $$$$\frac{\mathrm{1}−{cos}\mathrm{2}\theta}{\mathrm{2}}+\frac{\mathrm{1}−{cos}\left(\mathrm{2}\theta+\mathrm{2}\alpha\right)}{\mathrm{2}}+\frac{\mathrm{1}−{cos}\left(\mathrm{2}\theta+\mathrm{4}\alpha\right)}{\mathrm{2}} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\left\{{cos}\mathrm{2}\theta+{cos}\left(\mathrm{2}\theta+\mathrm{4}\alpha\right)+{cos}\left(\mathrm{2}\theta+\mathrm{2}\alpha\right)\right\} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\left\{\mathrm{2}{cos}\left(\frac{\mathrm{2}\theta+\mathrm{2}\theta+\mathrm{4}\alpha}{\mathrm{2}}\right){cos}\left(\frac{\mathrm{2}\theta+\mathrm{4}\alpha−\mathrm{2}\theta}{\mathrm{2}}\right)+{cos}\left(\mathrm{2}\theta+\mathrm{2}\alpha\right)\right\} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}{cos}\left(\mathrm{2}\theta+\mathrm{2}\alpha\right)\left\{\left(\mathrm{2}{cos}\mathrm{2}\alpha\right)+\mathrm{1}\right\} \\ $$
Commented by TANMAY PANACEA last updated on 02/Nov/20
$$\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}{cos}\left(\mathrm{2}\theta+\mathrm{2}×\frac{\mathrm{2}\pi}{\mathrm{3}}\right)\left\{\mathrm{1}+\mathrm{2}{cos}\mathrm{2}×\frac{\mathrm{2}\pi}{\mathrm{3}}\right\} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\left\{{cos}\left(\mathrm{2}\theta\right){cos}\left(\mathrm{240}^{{o}} \right)−{sin}\mathrm{2}\theta{sin}\mathrm{240}^{{o}} \right\}\left\{\mathrm{1}+\mathrm{2}{cos}\mathrm{240}^{{o}} \right\} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\left\{{cos}\mathrm{2}\theta×\frac{−\mathrm{1}}{\mathrm{2}}−{sin}\mathrm{2}\theta×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right\}\left\{\mathrm{1}+\mathrm{2}×\frac{−\mathrm{1}}{\mathrm{2}}\right\} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\left\{\frac{−{cos}\mathrm{2}\theta−\sqrt{\mathrm{3}}\:{sin}\mathrm{2}\theta}{\mathrm{2}}\right\}\left\{\mathrm{0}\right\} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}} \\ $$
Commented by help last updated on 02/Nov/20
$${many}\:{thanks} \\ $$
Commented by TANMAY PANACEA last updated on 02/Nov/20
$${most}\:{welcome} \\ $$