Menu Close

Question-120801




Question Number 120801 by TITA last updated on 02/Nov/20
Commented by liberty last updated on 02/Nov/20
let  { ((i=(1,0,0))),((j=(0,1,0))),((k=(0,0,1))) :}→ { ((i.i=1.1+0.0+0.0=1)),((j.j=0.0+1.1+0.0=1)),((k.k=0.0+0.0+1.1=1)) :}
$$\mathrm{let}\:\begin{cases}{\mathrm{i}=\left(\mathrm{1},\mathrm{0},\mathrm{0}\right)}\\{\mathrm{j}=\left(\mathrm{0},\mathrm{1},\mathrm{0}\right)}\\{\mathrm{k}=\left(\mathrm{0},\mathrm{0},\mathrm{1}\right)}\end{cases}\rightarrow\begin{cases}{\mathrm{i}.\mathrm{i}=\mathrm{1}.\mathrm{1}+\mathrm{0}.\mathrm{0}+\mathrm{0}.\mathrm{0}=\mathrm{1}}\\{\mathrm{j}.\mathrm{j}=\mathrm{0}.\mathrm{0}+\mathrm{1}.\mathrm{1}+\mathrm{0}.\mathrm{0}=\mathrm{1}}\\{\mathrm{k}.\mathrm{k}=\mathrm{0}.\mathrm{0}+\mathrm{0}.\mathrm{0}+\mathrm{1}.\mathrm{1}=\mathrm{1}}\end{cases} \\ $$
Commented by TITA last updated on 03/Nov/20
thanks
$${thanks} \\ $$
Answered by $@y@m last updated on 03/Nov/20
a^→ .b^→ =∣a∣ ∣b∣cosθ  (i) Put a^→ =b^→ =i^�   ⇒i^� .i^� =∣i^� ∣∣i^� ∣cos0=1 and so on.  (ii) Put a^→ =i^� , b^→  =j^�   ⇒i^� .j^� =∣i^� ∣∣j^� ∣cos90=0 and so on.
$$\overset{\rightarrow} {{a}}.\overset{\rightarrow} {{b}}=\mid{a}\mid\:\mid{b}\mid\mathrm{cos}\theta \\ $$$$\left({i}\right)\:{Put}\:\overset{\rightarrow} {{a}}=\overset{\rightarrow} {{b}}=\hat {{i}} \\ $$$$\Rightarrow\hat {{i}}.\hat {{i}}=\mid\hat {{i}}\mid\mid\hat {{i}}\mid\mathrm{cos0}=\mathrm{1}\:{and}\:{so}\:{on}. \\ $$$$\left({ii}\right)\:{Put}\:\overset{\rightarrow} {{a}}=\hat {{i}},\:\overset{\rightarrow} {{b}}\:=\hat {{j}} \\ $$$$\Rightarrow\hat {{i}}.\hat {{j}}=\mid\hat {{i}}\mid\mid\hat {{j}}\mid\mathrm{cos90}=\mathrm{0}\:{and}\:{so}\:{on}. \\ $$
Commented by TITA last updated on 03/Nov/20
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *