Menu Close

Question-120920




Question Number 120920 by Khalmohmmad last updated on 04/Nov/20
Answered by MJS_new last updated on 04/Nov/20
20^(111)     0 because k=0 ⇒ k^2 +k=0 and we′re multiplying    2^(49) d^(49) =562949953421312d^(49)     Π_(r=a) ^b (2r+2k)=2^(b−a+1) ×(((k+a)(k+b)!)/((k+a)!))  for a<0 we get some x! with x∈Z^−  and both  faculty and Γ(x) are not defined for x∈Z^−
$$\mathrm{20}^{\mathrm{111}} \\ $$$$ \\ $$$$\mathrm{0}\:\mathrm{because}\:{k}=\mathrm{0}\:\Rightarrow\:{k}^{\mathrm{2}} +{k}=\mathrm{0}\:\mathrm{and}\:\mathrm{we}'\mathrm{re}\:\mathrm{multiplying} \\ $$$$ \\ $$$$\mathrm{2}^{\mathrm{49}} {d}^{\mathrm{49}} =\mathrm{562949953421312}{d}^{\mathrm{49}} \\ $$$$ \\ $$$$\underset{{r}={a}} {\overset{{b}} {\prod}}\left(\mathrm{2}{r}+\mathrm{2}{k}\right)=\mathrm{2}^{{b}−{a}+\mathrm{1}} ×\frac{\left({k}+{a}\right)\left({k}+{b}\right)!}{\left({k}+{a}\right)!} \\ $$$$\mathrm{for}\:{a}<\mathrm{0}\:\mathrm{we}\:\mathrm{get}\:\mathrm{some}\:{x}!\:\mathrm{with}\:{x}\in\mathbb{Z}^{−} \:\mathrm{and}\:\mathrm{both} \\ $$$$\mathrm{faculty}\:\mathrm{and}\:\Gamma\left({x}\right)\:\mathrm{are}\:\mathrm{not}\:\mathrm{defined}\:\mathrm{for}\:{x}\in\mathbb{Z}^{−} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *