Question-120970 Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 120970 by Algoritm last updated on 04/Nov/20 Answered by mathmax by abdo last updated on 04/Nov/20 I=∫0πln(1+cosx2)cosxdxletf(a)=∫0πln(1+acosx)cosxdxwith∣a∣<1I=f(12)wehsvef′(a)=∫0πdx1+acosx=tan(x2)=t∫0∞2dt(1+t2)(1+a1−t21+t2)=∫0∞2dt1+t2+a−at2=∫0∞2dt1+a+(1−a)t2=21−a∫0∞dtt2+1+a1−a=t=1+a1−az21−a.1−a1+a∫0∞1z2+11+a1−adz=21−a2×π2=π1−a2⇒f(a)=πarcsin(a)+cf(0)=0=0+c⇒c=0⇒f(a)=πarcsin(a)⇒I=f(12)=πarcsin(12)=π26 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-186507Next Next post: lim-x-1-n-2-pi-1-n-2-2pi-1-n-2-npi- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.