Menu Close

Question-120970




Question Number 120970 by Algoritm last updated on 04/Nov/20
Answered by mathmax by abdo last updated on 04/Nov/20
I =∫_0 ^π  ((ln(1+((cosx)/2)))/(cosx))dx   let f(a) =∫_0 ^π  ((ln(1+acosx))/(cosx))dx  with ∣a∣<1  I =f((1/2))  we hsve f^′ (a) =∫_0 ^π (dx/(1+acosx)) =_(tan((x/2))=t)    ∫_0 ^∞  ((2dt)/((1+t^2 )(1+a((1−t^2 )/(1+t^2 )))))  =∫_0 ^∞   ((2dt)/(1+t^2 +a−at^2 )) =∫_0 ^∞  ((2dt)/(1+a +(1−a)t^2 ))  =(2/(1−a))∫_0 ^∞    (dt/(t^2  +((1+a)/(1−a)))) =_(t=(√((1+a)/(1−a)))z)    (2/(1−a)).((1−a)/(1+a))∫_0 ^∞   (1/(z^2 +1))((√(1+a))/( (√(1−a))))dz  =(2/( (√(1−a^2 ))))×(π/2) =(π/( (√(1−a^2 )))) ⇒f(a) =π arcsin(a)+c  f(0)=0 =0+c ⇒c=0 ⇒f(a) =π arcsin(a) ⇒  I =f((1/2))=π arcsin((1/2))=(π^2 /6)
I=0πln(1+cosx2)cosxdxletf(a)=0πln(1+acosx)cosxdxwitha∣<1I=f(12)wehsvef(a)=0πdx1+acosx=tan(x2)=t02dt(1+t2)(1+a1t21+t2)=02dt1+t2+aat2=02dt1+a+(1a)t2=21a0dtt2+1+a1a=t=1+a1az21a.1a1+a01z2+11+a1adz=21a2×π2=π1a2f(a)=πarcsin(a)+cf(0)=0=0+cc=0f(a)=πarcsin(a)I=f(12)=πarcsin(12)=π26

Leave a Reply

Your email address will not be published. Required fields are marked *