Question Number 121085 by TITA last updated on 05/Nov/20
Commented by TITA last updated on 05/Nov/20
$${please}\:{help} \\ $$
Answered by Dwaipayan Shikari last updated on 05/Nov/20
$$\mathrm{3}{x}^{\mathrm{2}} +{x}+\mathrm{2}=\mathrm{0}\Rightarrow{x}=\frac{−\mathrm{1}\pm{i}\sqrt{\mathrm{23}}}{\mathrm{6}}\: \\ $$$$\alpha+\beta=−\frac{\mathrm{1}}{\mathrm{3}}\:\:\:\:\alpha\beta=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\frac{\alpha+\beta}{\alpha\beta}=\frac{−\mathrm{1}}{\mathrm{2}}\:\Rightarrow\frac{\mathrm{1}}{\alpha}+\frac{\mathrm{1}}{\beta}=−\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\:\frac{\mathrm{1}}{\alpha^{\mathrm{2}} }+\frac{\mathrm{1}}{\beta^{\mathrm{2}} }+\frac{\mathrm{2}}{\alpha\beta}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\frac{\mathrm{1}}{\alpha^{\mathrm{2}} }+\frac{\mathrm{1}}{\beta^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{3}=−\frac{\mathrm{11}}{\mathrm{4}} \\ $$$$ \\ $$$${Equation}\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\alpha^{\mathrm{2}} }+\frac{\mathrm{1}}{\beta^{\mathrm{2}} }\right){x}+\left(\frac{\mathrm{1}}{\alpha\beta}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} +\frac{\mathrm{11}}{\mathrm{4}}{x}+\frac{\mathrm{9}}{\mathrm{4}}=\mathrm{0} \\ $$$$\mathrm{4}{x}^{\mathrm{2}} +\mathrm{11}{x}+\mathrm{9}=\mathrm{0} \\ $$
Answered by liberty last updated on 05/Nov/20
$$\left(\mathrm{14}\right)\:\mathrm{3x}^{\mathrm{2}} +\mathrm{x}+\mathrm{2}=\mathrm{0}\:\rightarrow\begin{cases}{\alpha}\\{\beta}\end{cases} \\ $$$$\:\rightarrow\:\begin{cases}{\alpha=\frac{−\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{24}}}{\mathrm{6}}\:=\:\frac{−\mathrm{1}+{i}\sqrt{\mathrm{23}}}{\mathrm{6}}}\\{\beta=\frac{−\mathrm{1}−{i}\sqrt{\mathrm{23}}}{\mathrm{6}}}\end{cases} \\ $$$$\rightarrow\begin{cases}{\alpha^{\mathrm{2}} =\frac{−\mathrm{22}−\mathrm{2}{i}\sqrt{\mathrm{23}}}{\mathrm{36}}=\:\frac{−\mathrm{11}−{i}\sqrt{\mathrm{23}}}{\mathrm{18}}}\\{\beta^{\mathrm{2}} =\frac{−\mathrm{11}+{i}\sqrt{\mathrm{23}}}{\mathrm{18}}}\end{cases} \\ $$$$\rightarrow\begin{cases}{\frac{\mathrm{1}}{\alpha^{\mathrm{2}} }\:=\:\frac{−\mathrm{18}}{\mathrm{11}+{i}\sqrt{\mathrm{23}}}\:=\:\frac{−\mathrm{11}+{i}\sqrt{\mathrm{23}}}{\mathrm{8}}}\\{\frac{\mathrm{1}}{\beta^{\mathrm{2}} }=\frac{−\mathrm{18}}{\mathrm{11}−{i}\sqrt{\mathrm{23}}}=\frac{−\mathrm{11}−{i}\sqrt{\mathrm{23}}\:}{\mathrm{8}}}\end{cases} \\ $$
Answered by TANMAY PANACEA last updated on 05/Nov/20
$$\alpha+\beta=\frac{−\mathrm{1}}{\mathrm{3}} \\ $$$$\alpha\beta=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} +{x}+\mathrm{2}=\mathrm{0} \\ $$$${x}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{1}−\mathrm{4}×\mathrm{3}×\mathrm{2}}}{\mathrm{2}×\mathrm{3}}=\frac{−\mathrm{1}\pm{i}\sqrt{\mathrm{23}}}{\mathrm{6}} \\ $$$$\alpha=\frac{−\mathrm{1}+{i}\sqrt{\mathrm{23}}}{\mathrm{6}}\:\:\:\beta=\frac{−\mathrm{1}−{i}\sqrt{\mathrm{23}}}{\mathrm{6}} \\ $$$$\frac{\mathrm{1}}{\alpha^{\mathrm{2}} }=\frac{\mathrm{1}−{i}×\mathrm{2}\sqrt{\mathrm{23}}\:−\mathrm{23}}{\mathrm{36}}=\frac{−\mathrm{22}−{i}\sqrt{\mathrm{23}}}{\mathrm{36}} \\ $$$$\frac{\mathrm{1}}{\beta^{\mathrm{2}} }=\frac{\mathrm{1}+{i}\mathrm{2}\sqrt{\mathrm{23}}\:−\mathrm{23}}{\mathrm{36}}=\frac{−\mathrm{22}+{i}\mathrm{2}\sqrt{\mathrm{23}}}{\mathrm{36}} \\ $$$${eqn} \\ $$$${x}^{\mathrm{2}} −{x}\left(\frac{\mathrm{1}}{\alpha^{\mathrm{2}} }+\frac{\mathrm{1}}{\beta^{\mathrm{2}} }\right)+\frac{\mathrm{1}}{\left(\alpha\beta\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −{x}\left\{\frac{\left(\alpha+\beta\right)^{\mathrm{2}} −\mathrm{2}\alpha\beta}{\left(\alpha\beta\right)^{\mathrm{2}} }\right\}+\frac{\mathrm{1}}{\left(\alpha\beta\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −{x}\left(\frac{\frac{\mathrm{1}}{\mathrm{9}}−\mathrm{2}×\frac{\mathrm{2}}{\mathrm{3}}}{\frac{\mathrm{4}}{\mathrm{9}}}\right)+\frac{\mathrm{9}}{\mathrm{4}}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −{x}\left(\frac{\mathrm{1}−\mathrm{12}}{\mathrm{4}}\right)+\frac{\mathrm{9}}{\mathrm{4}}=\mathrm{0} \\ $$$$\mathrm{4}{x}^{\mathrm{2}} +\mathrm{11}{x}+\mathrm{9}=\mathrm{0} \\ $$$$\mathrm{27}\alpha^{\mathrm{4}} =\mathrm{11}\alpha+\mathrm{10} \\ $$$$\alpha=\frac{−\mathrm{1}+{i}\sqrt{\mathrm{23}}}{\mathrm{6}}\rightarrow\alpha^{\mathrm{2}} =\frac{\mathrm{1}−{i}\mathrm{2}\sqrt{\mathrm{23}}\:−\mathrm{23}}{\mathrm{36}}=\frac{−\mathrm{22}−{i}\mathrm{2}\sqrt{\mathrm{23}}}{\mathrm{36}}=\frac{−\mathrm{11}−{i}\sqrt{\mathrm{23}}}{\mathrm{18}} \\ $$$$\alpha^{\mathrm{4}} =\frac{\mathrm{121}+{i}\mathrm{22}\sqrt{\mathrm{23}}\:−\mathrm{23}}{\mathrm{324}}=\frac{\mathrm{98}+{i}\mathrm{22}\sqrt{\mathrm{23}}}{\mathrm{324}}=\frac{\mathrm{49}+{i}\mathrm{11}\sqrt{\mathrm{23}}}{\mathrm{162}} \\ $$$$\mathrm{27}\alpha^{\mathrm{4}} =\mathrm{27}×\frac{\mathrm{49}+{i}\mathrm{11}\sqrt{\mathrm{23}}}{\mathrm{162}}=\frac{\mathrm{49}+{i}\mathrm{11}\sqrt{\mathrm{23}}}{\mathrm{6}} \\ $$$$\mathrm{11}\alpha+\mathrm{10} \\ $$$$\mathrm{11}×\frac{−\mathrm{1}+{i}\sqrt{\mathrm{23}}}{\mathrm{6}}+\mathrm{10} \\ $$$$\frac{−\mathrm{11}+{i}\mathrm{11}\sqrt{\mathrm{23}}\:+\mathrm{60}}{\mathrm{6}} \\ $$$$=\frac{\mathrm{49}+{i}\mathrm{11}\sqrt{\mathrm{23}}}{\mathrm{6}} \\ $$$$\boldsymbol{{so}}\:\boldsymbol{{L}}{HS}={RHS} \\ $$$$ \\ $$
Commented by TITA last updated on 05/Nov/20
$${thanks}\:{sir} \\ $$
Commented by TANMAY PANACEA last updated on 05/Nov/20
$${most}\:{welcome} \\ $$