Menu Close

Question-121154




Question Number 121154 by zakirullah last updated on 05/Nov/20
Answered by Bird last updated on 05/Nov/20
let f(n)=u_n  ⇒u_n =6u_(m−1) −9u_(n−2)   u_0 =1  and u_2 =2  e⇒u_(n+2) =6u_(n+1) −9u_n  ⇒  u_(n+2) −6u_(n+1) +9u_n =0  +(eq)→r^2 −6r+9=0 ⇒  (r−3)^2 =0 ⇒r=3(double) ⇒  u_n =(an +b)3^n   u_0 =1 =b  u_2 =(2a+b)3^2  =2 ⇒  2a+b=(2/9) ⇒2a =(2/9)−1 =((−7)/9) ⇒  a=−(7/(18)) ⇒f(n)=(−(7/(18))n+1)3^n
$${let}\:{f}\left({n}\right)={u}_{{n}} \:\Rightarrow{u}_{{n}} =\mathrm{6}{u}_{{m}−\mathrm{1}} −\mathrm{9}{u}_{{n}−\mathrm{2}} \\ $$$${u}_{\mathrm{0}} =\mathrm{1}\:\:{and}\:{u}_{\mathrm{2}} =\mathrm{2} \\ $$$${e}\Rightarrow{u}_{{n}+\mathrm{2}} =\mathrm{6}{u}_{{n}+\mathrm{1}} −\mathrm{9}{u}_{{n}} \:\Rightarrow \\ $$$${u}_{{n}+\mathrm{2}} −\mathrm{6}{u}_{{n}+\mathrm{1}} +\mathrm{9}{u}_{{n}} =\mathrm{0} \\ $$$$+\left({eq}\right)\rightarrow{r}^{\mathrm{2}} −\mathrm{6}{r}+\mathrm{9}=\mathrm{0}\:\Rightarrow \\ $$$$\left({r}−\mathrm{3}\right)^{\mathrm{2}} =\mathrm{0}\:\Rightarrow{r}=\mathrm{3}\left({double}\right)\:\Rightarrow \\ $$$${u}_{{n}} =\left({an}\:+{b}\right)\mathrm{3}^{{n}} \\ $$$${u}_{\mathrm{0}} =\mathrm{1}\:={b} \\ $$$${u}_{\mathrm{2}} =\left(\mathrm{2}{a}+{b}\right)\mathrm{3}^{\mathrm{2}} \:=\mathrm{2}\:\Rightarrow \\ $$$$\mathrm{2}{a}+{b}=\frac{\mathrm{2}}{\mathrm{9}}\:\Rightarrow\mathrm{2}{a}\:=\frac{\mathrm{2}}{\mathrm{9}}−\mathrm{1}\:=\frac{−\mathrm{7}}{\mathrm{9}}\:\Rightarrow \\ $$$${a}=−\frac{\mathrm{7}}{\mathrm{18}}\:\Rightarrow{f}\left({n}\right)=\left(−\frac{\mathrm{7}}{\mathrm{18}}{n}+\mathrm{1}\right)\mathrm{3}^{{n}} \\ $$$$ \\ $$
Commented by zakirullah last updated on 05/Nov/20
thsnks sir! please solve all?
$${thsnks}\:{sir}!\:{please}\:{solve}\:{all}? \\ $$
Answered by TANMAY PANACEA last updated on 05/Nov/20
2)f(n)=f(n−1)+(n−1)  f(2)=1=f(0)+1  f(0)=0   f(2)=1  f(n)=((n(n−1))/2)
$$\left.\mathrm{2}\right){f}\left({n}\right)={f}\left({n}−\mathrm{1}\right)+\left({n}−\mathrm{1}\right) \\ $$$${f}\left(\mathrm{2}\right)=\mathrm{1}={f}\left(\mathrm{0}\right)+\mathrm{1} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{0}\:\:\:{f}\left(\mathrm{2}\right)=\mathrm{1} \\ $$$${f}\left({n}\right)=\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$
Commented by zakirullah last updated on 05/Nov/20
thanks sir G
$${thanks}\:{sir}\:{G} \\ $$
Commented by TANMAY PANACEA last updated on 06/Nov/20
most welcome
$${most}\:{welcome} \\ $$
Answered by Bird last updated on 05/Nov/20
f(n)=f(n−1)+n−1 ⇒  u_n =u_(n−1) +n−1 ⇒u_(n+1) =u_n +n ⇒  u_(n+1) −u_n =n ⇒Σ_(k=1) ^(n−1) (u_(k+1) −u_k )  =Σ_(k=1) ^(n−1)  k =(((n−1)n)/2) ⇒  u_2 −u_1 +u_3 −u_2 +....+u_n −u_(n−1)   =((n(n−1))/2) ⇒u_n −u_1 =((n(n−1))/2)  u_n =((n(n−1))/2) +u_1   u_2 =1+u_1 =1 ⇒u_1 =0 ⇒u_n =((n(n−1))/2)
$${f}\left({n}\right)={f}\left({n}−\mathrm{1}\right)+{n}−\mathrm{1}\:\Rightarrow \\ $$$${u}_{{n}} ={u}_{{n}−\mathrm{1}} +{n}−\mathrm{1}\:\Rightarrow{u}_{{n}+\mathrm{1}} ={u}_{{n}} +{n}\:\Rightarrow \\ $$$${u}_{{n}+\mathrm{1}} −{u}_{{n}} ={n}\:\Rightarrow\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left({u}_{{k}+\mathrm{1}} −{u}_{{k}} \right) \\ $$$$=\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{k}\:=\frac{\left({n}−\mathrm{1}\right){n}}{\mathrm{2}}\:\Rightarrow \\ $$$${u}_{\mathrm{2}} −{u}_{\mathrm{1}} +{u}_{\mathrm{3}} −{u}_{\mathrm{2}} +….+{u}_{{n}} −{u}_{{n}−\mathrm{1}} \\ $$$$=\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}\:\Rightarrow{u}_{{n}} −{u}_{\mathrm{1}} =\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}} \\ $$$${u}_{{n}} =\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}\:+{u}_{\mathrm{1}} \\ $$$${u}_{\mathrm{2}} =\mathrm{1}+{u}_{\mathrm{1}} =\mathrm{1}\:\Rightarrow{u}_{\mathrm{1}} =\mathrm{0}\:\Rightarrow{u}_{{n}} =\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}} \\ $$
Answered by Bird last updated on 05/Nov/20
f(n) =3f(n−1) ⇒u_n =3u_(n−1)  ⇒  (u_n /u_(n−1) )=3 ⇒Π_(k=1) ^n  (u_k /u_(k−1) )=3^n  ⇒  (u_1 /u_0 ).(u_2 /u_1 )......(u_n /u_(n−1) )=3^n  ⇒u_n =3^n  u_0   ⇒u_n =2×3^n
$${f}\left({n}\right)\:=\mathrm{3}{f}\left({n}−\mathrm{1}\right)\:\Rightarrow{u}_{{n}} =\mathrm{3}{u}_{{n}−\mathrm{1}} \:\Rightarrow \\ $$$$\frac{{u}_{{n}} }{{u}_{{n}−\mathrm{1}} }=\mathrm{3}\:\Rightarrow\prod_{{k}=\mathrm{1}} ^{{n}} \:\frac{{u}_{{k}} }{{u}_{{k}−\mathrm{1}} }=\mathrm{3}^{{n}} \:\Rightarrow \\ $$$$\frac{{u}_{\mathrm{1}} }{{u}_{\mathrm{0}} }.\frac{{u}_{\mathrm{2}} }{{u}_{\mathrm{1}} }……\frac{{u}_{{n}} }{{u}_{{n}−\mathrm{1}} }=\mathrm{3}^{{n}} \:\Rightarrow{u}_{{n}} =\mathrm{3}^{{n}} \:{u}_{\mathrm{0}} \\ $$$$\Rightarrow{u}_{{n}} =\mathrm{2}×\mathrm{3}^{{n}} \\ $$
Commented by zakirullah last updated on 05/Nov/20
thanks so much
$${thanks}\:{so}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *