Question Number 121229 by sarahvalencia last updated on 06/Nov/20
Answered by som(math1967) last updated on 06/Nov/20
$$\mathrm{Total}\:\mathrm{resistance}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circuite} \\ $$$$\:\mathrm{8}+\left\{\mathrm{1}\boldsymbol{\div}\left(\frac{\mathrm{1}}{\mathrm{10}}+\frac{\mathrm{1}}{\mathrm{15}}+\frac{\mathrm{1}}{\mathrm{20}}\right)\right\} \\ $$$$=\mathrm{8}+\frac{\mathrm{60}}{\mathrm{13}} \\ $$$$=\frac{\mathrm{164}}{\mathrm{13}}\:\mathrm{ohm} \\ $$$$\mathrm{current}\:\mathrm{flow}\:\mathrm{in}\:\mathrm{8ohm} \\ $$$$\mathrm{48}×\frac{\mathrm{13}}{\mathrm{164}}=\frac{\mathrm{12}×\mathrm{13}}{\mathrm{41}}\:\mathrm{amp} \\ $$$$\mathrm{p}.\mathrm{d}\:\mathrm{accross}\:\mathrm{10}\:\mathrm{ohm} \\ $$$$\left(\mathrm{48}−\mathrm{8}×\frac{\mathrm{12}×\mathrm{13}}{\mathrm{41}}\right)\mathrm{v} \\ $$$$\mathrm{current}\:\mathrm{flow}\:\mathrm{10}\:\mathrm{ohm} \\ $$$$\left(\mathrm{48}−\frac{\mathrm{96}×\mathrm{13}}{\mathrm{41}}\right)\boldsymbol{\div}\mathrm{10}=\mathrm{1}.\mathrm{75Amp} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{approx}\right) \\ $$$$ \\ $$