Menu Close

Question-121397




Question Number 121397 by abdelsalamalmukasabe last updated on 07/Nov/20
Answered by MJS_new last updated on 07/Nov/20
∫2^(1/x) dx=       [by parts]  =2^(1/x) x+ln 2 ∫(2^(1/x) /x)dx=       [t=(1/x) → dx=−x^2 dt]  =2^(1/x) x−ln 2 ∫(2^t /t)dt=  =2^(1/x) x−ln 2 Ei (ln 2 t) =  =2^(1/x) x−ln 2 Ei (((ln 2)/x)) +C
21/xdx=[byparts]=21/xx+ln221/xxdx=[t=1xdx=x2dt]=21/xxln22ttdt==21/xxln2Ei(ln2t)==21/xxln2Ei(ln2x)+C
Answered by mathmax by abdo last updated on 07/Nov/20
at form of serie  ∫ 2^(1/x) dx =∫  e^((1/x)ln(2))  =∫Σ_(n=0) ^∞  (((((ln2)/x))^n )/(n!))  =∫Σ_(n=0) ^∞  (((ln2)^n )/(n! x^n ))  =Σ_(n=0) ^∞  (((ln2)^n )/(n!)) ∫  x^(−n)  dx =Σ_(n=0) ^∞  (((ln2)^n )/(n!)) (x^(1−n) /(1−n)) +C  =Σ_(n=0) ^∞   (((ln2)^n )/((1−n)(n!) x^(n−1) )) +C
atformofserie21xdx=e1xln(2)=n=0(ln2x)nn!=n=0(ln2)nn!xn=n=0(ln2)nn!xndx=n=0(ln2)nn!x1n1n+C=n=0(ln2)n(1n)(n!)xn1+C

Leave a Reply

Your email address will not be published. Required fields are marked *