Menu Close

Question-121446




Question Number 121446 by mr W last updated on 08/Nov/20
Answered by liberty last updated on 08/Nov/20
u = x+(√(1+x^2 ))  u(y+(√(1+y^2 )) ) = 1 ⇒(√(1+y^2 )) = (1/u)−y  ⇒1+y^2 =(1/u^2 )−2(y/u)+y^2   ((2y)/u) = (1/u^2 )−u ⇒y=(1/2)((1/u)−u)  (1/u)=(1/(x+(√(1+x^2 )))) = −x+(√(1+x^2 ))  y=(1/2)(−x+(√(1+x^2 ))−x−(√(1+x^2 )) )  y=−x⇒x+y =0 ∧(x+y)^2 =0
$$\mathrm{u}\:=\:\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} } \\ $$$$\mathrm{u}\left(\mathrm{y}+\sqrt{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }\:\right)\:=\:\mathrm{1}\:\Rightarrow\sqrt{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{u}}−\mathrm{y} \\ $$$$\Rightarrow\mathrm{1}+\mathrm{y}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{u}^{\mathrm{2}} }−\mathrm{2}\frac{\mathrm{y}}{\mathrm{u}}+\mathrm{y}^{\mathrm{2}} \\ $$$$\frac{\mathrm{2y}}{\mathrm{u}}\:=\:\frac{\mathrm{1}}{\mathrm{u}^{\mathrm{2}} }−\mathrm{u}\:\Rightarrow\mathrm{y}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{u}}−\mathrm{u}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{u}}=\frac{\mathrm{1}}{\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}\:=\:−\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} } \\ $$$$\mathrm{y}=\frac{\mathrm{1}}{\mathrm{2}}\left(−\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }−\mathrm{x}−\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\right) \\ $$$$\mathrm{y}=−\mathrm{x}\Rightarrow\mathrm{x}+\mathrm{y}\:=\mathrm{0}\:\wedge\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} =\mathrm{0}\: \\ $$
Answered by MJS_new last updated on 08/Nov/20
0  let x=((p^2 −1)/(2p))∧y=((q^2 −1)/(2q))  ⇒ pq=1 ⇒ y=−((p^2 −1)/(2p)) ⇒ x+y=0
$$\mathrm{0} \\ $$$$\mathrm{let}\:{x}=\frac{{p}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{p}}\wedge{y}=\frac{{q}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{q}} \\ $$$$\Rightarrow\:{pq}=\mathrm{1}\:\Rightarrow\:{y}=−\frac{{p}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{p}}\:\Rightarrow\:{x}+{y}=\mathrm{0} \\ $$
Answered by mr W last updated on 08/Nov/20
(√(1+y^2 ))+y=(√(1+x^2 ))−x  x+y=(√(1+x^2 ))−(√(1+y^2 ))  x^2 +y^2 +2xy=1+x^2 +1+y^2 −2(√((1+x^2 )(1+y^2 )))  1−xy=(√((1+x^2 )(1+y^2 )))  1−2xy+x^2 y^2 =(1+x^2 )(1+y^2 )  1−2xy+x^2 y^2 =1+x^2 +y^2 +x^2 y^2   x^2 +y^2 +2xy=0  ⇒(x+y)^2 =0
$$\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }+{y}=\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }−{x} \\ $$$${x}+{y}=\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }−\sqrt{\mathrm{1}+{y}^{\mathrm{2}} } \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{xy}=\mathrm{1}+{x}^{\mathrm{2}} +\mathrm{1}+{y}^{\mathrm{2}} −\mathrm{2}\sqrt{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{y}^{\mathrm{2}} \right)} \\ $$$$\mathrm{1}−{xy}=\sqrt{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{y}^{\mathrm{2}} \right)} \\ $$$$\mathrm{1}−\mathrm{2}{xy}+{x}^{\mathrm{2}} {y}^{\mathrm{2}} =\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{y}^{\mathrm{2}} \right) \\ $$$$\mathrm{1}−\mathrm{2}{xy}+{x}^{\mathrm{2}} {y}^{\mathrm{2}} =\mathrm{1}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}^{\mathrm{2}} {y}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{xy}=\mathrm{0} \\ $$$$\Rightarrow\left({x}+{y}\right)^{\mathrm{2}} =\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *