Question Number 122264 by mnjuly1970 last updated on 15/Nov/20
Commented by mr W last updated on 15/Nov/20
$$\left(\mathrm{1}+{x}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left(_{{k}} ^{{n}} \right){x}^{{k}} \\ $$$$\left(\mathrm{1}−\mathrm{1}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}} \left(_{{k}} ^{{n}} \right)=\mathrm{0} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left[\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}} \left(_{{k}} ^{{n}} \right)\right]=\underset{{n}\rightarrow\infty} {\mathrm{lim}0}=\mathrm{0} \\ $$
Commented by mnjuly1970 last updated on 15/Nov/20
$${thank}\:{you}\:{master}… \\ $$