Menu Close

Question-122936




Question Number 122936 by CanovasCamiseros last updated on 21/Nov/20
Commented by Dwaipayan Shikari last updated on 21/Nov/20
∫_0 ^(π/2) (dx/(b^2 tan^2 x+1))            btanx=t  ⇒bsec^2 x=(dt/dx)  b∫_0 ^∞ (dt/((t^2 +b^2 )(t^2 +1)))  =(b/(b^2 −1))∫_0 ^∞ (1/(t^2 +1))−(1/(t^2 +b^2 ))  =((πb)/(2(b^2 −1)))−(π/(2(b^2 −1)))  =(π/(2(b+1)))
0π2dxb2tan2x+1btanx=tbsec2x=dtdxb0dt(t2+b2)(t2+1)=bb2101t2+11t2+b2=πb2(b21)π2(b21)=π2(b+1)
Commented by CanovasCamiseros last updated on 21/Nov/20
please help
pleasehelp
Answered by mathmax by abdo last updated on 21/Nov/20
A =∫_0 ^(π/2)  (dx/(b^2 tan^2 x +1)) ⇒ A =_(tanx=t)   ∫_0 ^∞    (dt/((1+t^2 )(b^2 t^2  +1)))  =_(bt=u)   ∫_0 ^∞       (du/(b(1+(u^2 /b^2 ))(u^2  +1))) =∫_0 ^∞    ((bdu)/((u^2  +b^2 )(u^2  +1)))  =(b/2) ∫_(−∞) ^(+∞)  (du/((u^2  +b^2 )(u^2  +1)))  (we rake b>0) let  ϕ(z)=(1/((z^2  +b^2 )(z^2  +1))) ⇒ϕ(z)=(1/((z−ib)(z+ib)(z−i)(z+i)))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,i) +Res(ϕ,ib)}  Res(ϕ,i)=(1/(2i(b^2 −1)))  Res(ϕ,ib) =(1/(2ib(1−b^2 ))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{(1/(2i(b^2 −1)))+(1/(2ib(1−b^2 )))}  =(π/(b^2 −1)) −(π/(b(b^2 −1))) =(π/(b^2 −1))(1−(1/b)) =((π(b−1))/(b(b−1)(b+1))) =(π/(b(b+1))) ⇒  A =(b/2).(π/(b(b+1))) =(π/(2(b+1)))
A=0π2dxb2tan2x+1A=tanx=t0dt(1+t2)(b2t2+1)=bt=u0dub(1+u2b2)(u2+1)=0bdu(u2+b2)(u2+1)=b2+du(u2+b2)(u2+1)(werakeb>0)letφ(z)=1(z2+b2)(z2+1)φ(z)=1(zib)(z+ib)(zi)(z+i)+φ(z)dz=2iπ{Res(φ,i)+Res(φ,ib)}Res(φ,i)=12i(b21)Res(φ,ib)=12ib(1b2)+φ(z)dz=2iπ{12i(b21)+12ib(1b2)}=πb21πb(b21)=πb21(11b)=π(b1)b(b1)(b+1)=πb(b+1)A=b2.πb(b+1)=π2(b+1)

Leave a Reply

Your email address will not be published. Required fields are marked *