Question-122936 Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 122936 by CanovasCamiseros last updated on 21/Nov/20 Commented by Dwaipayan Shikari last updated on 21/Nov/20 ∫0π2dxb2tan2x+1btanx=t⇒bsec2x=dtdxb∫0∞dt(t2+b2)(t2+1)=bb2−1∫0∞1t2+1−1t2+b2=πb2(b2−1)−π2(b2−1)=π2(b+1) Commented by CanovasCamiseros last updated on 21/Nov/20 pleasehelp Answered by mathmax by abdo last updated on 21/Nov/20 A=∫0π2dxb2tan2x+1⇒A=tanx=t∫0∞dt(1+t2)(b2t2+1)=bt=u∫0∞dub(1+u2b2)(u2+1)=∫0∞bdu(u2+b2)(u2+1)=b2∫−∞+∞du(u2+b2)(u2+1)(werakeb>0)letφ(z)=1(z2+b2)(z2+1)⇒φ(z)=1(z−ib)(z+ib)(z−i)(z+i)∫−∞+∞φ(z)dz=2iπ{Res(φ,i)+Res(φ,ib)}Res(φ,i)=12i(b2−1)Res(φ,ib)=12ib(1−b2)⇒∫−∞+∞φ(z)dz=2iπ{12i(b2−1)+12ib(1−b2)}=πb2−1−πb(b2−1)=πb2−1(1−1b)=π(b−1)b(b−1)(b+1)=πb(b+1)⇒A=b2.πb(b+1)=π2(b+1) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-57400Next Next post: Question-122938 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.