Question Number 122957 by I want to learn more last updated on 21/Nov/20
Commented by mr W last updated on 21/Nov/20
$${see}\:{Q}\mathrm{74970} \\ $$
Answered by mr W last updated on 21/Nov/20
$${p}_{{k}} ={a}^{{k}} +{b}^{{k}} +{c}^{{k}} \\ $$$${e}_{\mathrm{1}} ={a}+{b}+{c} \\ $$$${e}_{\mathrm{2}} ={ab}+{bc}+{ca} \\ $$$${e}_{\mathrm{3}} ={abc} \\ $$$${e}_{{i}\geqslant\mathrm{4}} =\mathrm{0} \\ $$$${e}_{\mathrm{1}} ={p}_{\mathrm{1}} =\mathrm{4} \\ $$$$\mathrm{2}{e}_{\mathrm{2}} ={e}_{\mathrm{1}} {p}_{\mathrm{1}} −{p}_{\mathrm{2}} =\mathrm{16}−\mathrm{10}=\mathrm{6}\:\Rightarrow{e}_{\mathrm{2}} =\mathrm{3} \\ $$$$\mathrm{3}{e}_{\mathrm{3}} ={e}_{\mathrm{2}} {p}_{\mathrm{1}} −{e}_{\mathrm{1}} {p}_{\mathrm{2}} +{p}_{\mathrm{3}} =\mathrm{12}−\mathrm{40}+\mathrm{22}=−\mathrm{6}\:\Rightarrow{e}_{\mathrm{3}} =−\mathrm{2} \\ $$$$\mathrm{0}={e}_{\mathrm{3}} {p}_{\mathrm{1}} −{e}_{\mathrm{2}} {p}_{\mathrm{2}} +{e}_{\mathrm{1}} {p}_{\mathrm{3}} −{p}_{\mathrm{4}} \:\Rightarrow{p}_{\mathrm{4}} =−\mathrm{2}×\mathrm{4}−\mathrm{3}×\mathrm{10}+\mathrm{4}×\mathrm{22}=\mathrm{50} \\ $$$$\mathrm{0}=−{e}_{\mathrm{3}} {p}_{\mathrm{2}} +{e}_{\mathrm{2}} {p}_{\mathrm{3}} −{e}_{\mathrm{1}} {p}_{\mathrm{4}} +{p}_{\mathrm{5}} \:\Rightarrow{p}_{\mathrm{5}} =−\mathrm{2}×\mathrm{10}−\mathrm{3}×\mathrm{22}+\mathrm{4}×\mathrm{50}=\mathrm{114} \\ $$$$…… \\ $$$${p}_{{n}} =\mathrm{4}{p}_{{n}−\mathrm{1}} −\mathrm{3}{p}_{{n}−\mathrm{2}} −\mathrm{2}{p}_{{n}−\mathrm{3}} \\ $$$${z}^{\mathrm{3}} −\mathrm{4}{z}^{\mathrm{2}} +\mathrm{3}{z}+\mathrm{2}=\mathrm{0} \\ $$$$\left({z}−\mathrm{2}\right)\left({z}^{\mathrm{2}} −\mathrm{2}{z}−\mathrm{1}\right)=\mathrm{0} \\ $$$${z}=\mathrm{2},\:\mathrm{1}\pm\sqrt{\mathrm{2}} \\ $$$$\Rightarrow{p}_{{n}} ={a}^{{n}} +{b}^{{n}} +{c}^{{n}} =\mathrm{2}^{{n}} +\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)^{{n}} +\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)^{{n}} \\ $$$${p}_{\mathrm{100}} =\mathrm{2}^{\mathrm{100}} +\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)^{\mathrm{100}} +\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)^{\mathrm{100}} \\ $$$$=\mathrm{2}^{\mathrm{100}} +\underset{{k}=\mathrm{0}} {\overset{\mathrm{100}} {\sum}}{C}_{{k}} ^{\mathrm{100}} \left[\left(\sqrt{\mathrm{2}}\right)^{{k}} +\left(−\sqrt{\mathrm{2}}\right)^{{k}} \right] \\ $$$$=\left(\mathrm{2}^{\mathrm{10}} \right)^{\mathrm{10}} +\underset{{k}=\mathrm{0}} {\overset{\mathrm{50}} {\sum}}{C}_{\mathrm{2}{k}} ^{\mathrm{100}} \mathrm{2}^{{k}+\mathrm{1}} \\ $$$$…… \\ $$
Commented by I want to learn more last updated on 21/Nov/20
$$\mathrm{Wow},\:\mathrm{thanks}\:\mathrm{sir}.\:\mathrm{Hope}\:\mathrm{for}\:\mathrm{the}\:\mathrm{final}\:\mathrm{answer}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir}. \\ $$
Commented by Tawa11 last updated on 23/Jul/21
$$\mathrm{Great} \\ $$