Question Number 123034 by benjo_mathlover last updated on 21/Nov/20
Answered by mathmax by abdo last updated on 21/Nov/20
$$\chi\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\:\Rightarrow\chi=_{\mathrm{x}=\frac{\mathrm{1}}{\mathrm{t}}} \:\:\:−\int_{\mathrm{0}} ^{\infty} \:\:\frac{−\mathrm{lnt}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}} }}\left(−\frac{\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} }\right) \\ $$$$=−\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnt}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\mathrm{dt}\:=−\chi\:\Rightarrow\mathrm{2}\chi\:=\mathrm{0}\:\Rightarrow\chi=\mathrm{0} \\ $$$$\mathrm{another}\:\mathrm{put}\:\mathrm{x}=\mathrm{tan}\theta\:\Rightarrow\chi\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{ln}\left(\mathrm{tan}\theta\right)}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta\right)\mathrm{d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\mathrm{ln}\left(\mathrm{sin}\theta\right)\mathrm{d}\theta−\int_{\mathrm{0}} ^{\infty} \mathrm{ln}\left(\mathrm{cos}\theta\right)\mathrm{d}\theta\:=\mathrm{0}\:\:\left(\mathrm{those}\:\mathrm{integrals}\:\mathrm{are}\:\mathrm{equals}\right) \\ $$