Question Number 123040 by ajfour last updated on 22/Nov/20
Commented by ajfour last updated on 22/Nov/20
$${Find}\:{maximum}\:{side}\:{length}\:{of} \\ $$$${equilateral}\:\bigtriangleup{ABC}\:,\:{in}\:{terms}\:{of} \\ $$$${p},\:{q},\:{and}\:{r};\:{the}\:{vertices}\:{of} \\ $$$${which}\:{lie}\:{respectively}\:{on}\:{three} \\ $$$${concentric}\:{circles}\:{of}\:{radii}\: \\ $$$${p}<{q}<{r}.\:\:{Assume}\:{vertex}\:{A}\:{is}\:{as} \\ $$$${shown}\:{on}\:{outermost}\:{circle}\:{and}\:{on} \\ $$$${vertical}\:{axes}. \\ $$
Commented by mr W last updated on 22/Nov/20
$${we}\:{get}\:{two}\:{triangles}\:{with}\:{side}\:{length} \\ $$$${s}=\sqrt{\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \pm\sqrt{\mathrm{3}\delta}}{\mathrm{2}}}\:{with} \\ $$$$\delta=\left({p}+{q}+{r}\right)\left(−{p}+{q}+{r}\right)\left({p}−{q}+{r}\right)\left({p}+{q}−{r}\right) \\ $$
Commented by ajfour last updated on 23/Nov/20
Commented by mr W last updated on 23/Nov/20
$${great}! \\ $$
Answered by mr W last updated on 22/Nov/20
Commented by ajfour last updated on 23/Nov/20
$${Thanks}\:{a}\:{lot}\:{sir}. \\ $$
Commented by mr W last updated on 22/Nov/20
$${B}\left(−\frac{{s}}{\mathrm{2}},\mathrm{0}\right) \\ $$$${C}\left(\frac{{s}}{\mathrm{2}},\mathrm{0}\right) \\ $$$${A}\left(\mathrm{0},\frac{\sqrt{\mathrm{3}}{s}}{\mathrm{2}}\right) \\ $$$${G}\left({h},{k}\right)\:{say} \\ $$$${h}^{\mathrm{2}} +\left({k}−\frac{\sqrt{\mathrm{3}}{s}}{\mathrm{2}}\right)^{\mathrm{2}} ={p}^{\mathrm{2}} \:\:\:…\left({i}\right) \\ $$$$\left({h}+\frac{{s}}{\mathrm{2}}\right)^{\mathrm{2}} +{k}^{\mathrm{2}} ={q}^{\mathrm{2}} \:\:\:…\left({ii}\right) \\ $$$$\left({h}−\frac{{s}}{\mathrm{2}}\right)^{\mathrm{2}} +{k}^{\mathrm{2}} ={r}^{\mathrm{2}} \:\:\:…\left({iii}\right) \\ $$$$\left({ii}\right)−\left({iii}\right): \\ $$$$\Rightarrow\mathrm{2}{hs}={q}^{\mathrm{2}} −{r}^{\mathrm{2}} \\ $$$$\left({ii}\right)−\left({i}\right): \\ $$$${hs}+\frac{{s}^{\mathrm{2}} }{\mathrm{4}}+\sqrt{\mathrm{3}}{ks}−\frac{\mathrm{3}{s}^{\mathrm{2}} }{\mathrm{4}}={q}^{\mathrm{2}} −{p}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2}\sqrt{\mathrm{3}}{ks}={s}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{p}^{\mathrm{2}} \\ $$$${into}\:\left({iii}\right): \\ $$$$\mathrm{3}\left({q}^{\mathrm{2}} −{r}^{\mathrm{2}} −{s}^{\mathrm{2}} \right)^{\mathrm{2}} +\left({s}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{p}^{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{12}{r}^{\mathrm{2}} {s}^{\mathrm{2}} \: \\ $$$${s}^{\mathrm{4}} −\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right){s}^{\mathrm{2}} +{p}^{\mathrm{4}} +{q}^{\mathrm{4}} +{r}^{\mathrm{4}} −{p}^{\mathrm{2}} {q}^{\mathrm{2}} −{q}^{\mathrm{2}} {r}^{\mathrm{2}} −{r}^{\mathrm{2}} {p}^{\mathrm{2}} =\mathrm{0} \\ $$$${s}^{\mathrm{2}} =\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \pm\sqrt{\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}\left({p}^{\mathrm{4}} +{q}^{\mathrm{4}} +{r}^{\mathrm{4}} −{p}^{\mathrm{2}} {q}^{\mathrm{2}} −{q}^{\mathrm{2}} {r}^{\mathrm{2}} −{r}^{\mathrm{2}} {p}^{\mathrm{2}} \right)}}{\mathrm{2}} \\ $$$$=\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \pm\sqrt{\mathrm{6}\left({p}^{\mathrm{2}} {q}^{\mathrm{2}} +{q}^{\mathrm{2}} {r}^{\mathrm{2}} +{r}^{\mathrm{2}} {p}^{\mathrm{2}} \right)−\mathrm{3}\left({p}^{\mathrm{4}} +{q}^{\mathrm{4}} +{r}^{\mathrm{4}} \right)}}{\mathrm{2}} \\ $$$$=\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \pm\sqrt{\mathrm{3}\left({p}+{q}+{r}\right)\left(−{p}+{q}+{r}\right)\left({p}−{q}+{r}\right)\left({p}+{q}−{r}\right)}}{\mathrm{2}} \\ $$$$\Rightarrow{s}=\sqrt{\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \pm\sqrt{\mathrm{3}\left({p}+{q}+{r}\right)\left(−{p}+{q}+{r}\right)\left({p}−{q}+{r}\right)\left({p}+{q}−{r}\right)}}{\mathrm{2}}} \\ $$