Menu Close

Question-123040




Question Number 123040 by ajfour last updated on 22/Nov/20
Commented by ajfour last updated on 22/Nov/20
Find maximum side length of  equilateral △ABC , in terms of  p, q, and r; the vertices of  which lie respectively on three  concentric circles of radii   p<q<r.  Assume vertex A is as  shown on outermost circle and on  vertical axes.
FindmaximumsidelengthofequilateralABC,intermsofp,q,andr;theverticesofwhichlierespectivelyonthreeconcentriccirclesofradiip<q<r.AssumevertexAisasshownonoutermostcircleandonverticalaxes.
Commented by mr W last updated on 22/Nov/20
we get two triangles with side length  s=(√((p^2 +q^2 +r^2 ±(√(3δ)))/2)) with  δ=(p+q+r)(−p+q+r)(p−q+r)(p+q−r)
wegettwotriangleswithsidelengths=p2+q2+r2±3δ2withδ=(p+q+r)(p+q+r)(pq+r)(p+qr)
Commented by ajfour last updated on 23/Nov/20
Commented by mr W last updated on 23/Nov/20
great!
great!
Answered by mr W last updated on 22/Nov/20
Commented by ajfour last updated on 23/Nov/20
Thanks a lot sir.
Thanksalotsir.
Commented by mr W last updated on 22/Nov/20
B(−(s/2),0)  C((s/2),0)  A(0,(((√3)s)/2))  G(h,k) say  h^2 +(k−(((√3)s)/2))^2 =p^2    ...(i)  (h+(s/2))^2 +k^2 =q^2    ...(ii)  (h−(s/2))^2 +k^2 =r^2    ...(iii)  (ii)−(iii):  ⇒2hs=q^2 −r^2   (ii)−(i):  hs+(s^2 /4)+(√3)ks−((3s^2 )/4)=q^2 −p^2   ⇒2(√3)ks=s^2 +q^2 +r^2 −2p^2   into (iii):  3(q^2 −r^2 −s^2 )^2 +(s^2 +q^2 +r^2 −2p^2 )^2 =12r^2 s^2    s^4 −(p^2 +q^2 +r^2 )s^2 +p^4 +q^4 +r^4 −p^2 q^2 −q^2 r^2 −r^2 p^2 =0  s^2 =((p^2 +q^2 +r^2 ±(√((p^2 +q^2 +r^2 )^2 −4(p^4 +q^4 +r^4 −p^2 q^2 −q^2 r^2 −r^2 p^2 ))))/2)  =((p^2 +q^2 +r^2 ±(√(6(p^2 q^2 +q^2 r^2 +r^2 p^2 )−3(p^4 +q^4 +r^4 ))))/2)  =((p^2 +q^2 +r^2 ±(√(3(p+q+r)(−p+q+r)(p−q+r)(p+q−r))))/2)  ⇒s=(√((p^2 +q^2 +r^2 ±(√(3(p+q+r)(−p+q+r)(p−q+r)(p+q−r))))/2))
B(s2,0)C(s2,0)A(0,3s2)G(h,k)sayh2+(k3s2)2=p2(i)(h+s2)2+k2=q2(ii)(hs2)2+k2=r2(iii)(ii)(iii):2hs=q2r2(ii)(i):hs+s24+3ks3s24=q2p223ks=s2+q2+r22p2into(iii):3(q2r2s2)2+(s2+q2+r22p2)2=12r2s2s4(p2+q2+r2)s2+p4+q4+r4p2q2q2r2r2p2=0s2=p2+q2+r2±(p2+q2+r2)24(p4+q4+r4p2q2q2r2r2p2)2=p2+q2+r2±6(p2q2+q2r2+r2p2)3(p4+q4+r4)2=p2+q2+r2±3(p+q+r)(p+q+r)(pq+r)(p+qr)2s=p2+q2+r2±3(p+q+r)(p+q+r)(pq+r)(p+qr)2

Leave a Reply

Your email address will not be published. Required fields are marked *