Menu Close

Question-123155




Question Number 123155 by Algoritm last updated on 23/Nov/20
Answered by Dwaipayan Shikari last updated on 23/Nov/20
f(x)(1+2x+3x^2 +4x^3 +...)=1  f′(x)(1+2x+3x^2 +..)+f(x)(1+2+6x+..)=0  f′(0)+3f(0)=0  f′(0)=−3f(0)
$${f}\left({x}\right)\left(\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{3}} +…\right)=\mathrm{1} \\ $$$${f}'\left({x}\right)\left(\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +..\right)+{f}\left({x}\right)\left(\mathrm{1}+\mathrm{2}+\mathrm{6}{x}+..\right)=\mathrm{0} \\ $$$${f}'\left(\mathrm{0}\right)+\mathrm{3}{f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${f}'\left(\mathrm{0}\right)=−\mathrm{3}{f}\left(\mathrm{0}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *