Menu Close

Question-123601




Question Number 123601 by aurpeyz last updated on 26/Nov/20
Commented by aurpeyz last updated on 26/Nov/20
pls explain to me if i still need to  find the class boundary since the   class interval is already continous.  thank you
$${pls}\:{explain}\:{to}\:{me}\:{if}\:{i}\:{still}\:{need}\:{to} \\ $$$${find}\:{the}\:{class}\:{boundary}\:{since}\:{the}\: \\ $$$${class}\:{interval}\:{is}\:{already}\:{continous}. \\ $$$${thank}\:{you} \\ $$
Commented by Dwaipayan Shikari last updated on 26/Nov/20
Skewness=(m_3 /s^3 )        s=(√((1/(Σf_k ))(Σ_(k≥1) ^(Σf_k ) (x_i −x^− )^2 f_i )))       s=standerd deviation  m_3 =(1/(Σf_i ))Σ_(k≥1) ^(Σf_k ) (x_k −x^− )^3 f_i               m_3 = 3rd order moment about mean  Kurtosis=(m_4 /s^4 )−3
$${Skewness}=\frac{{m}_{\mathrm{3}} }{{s}^{\mathrm{3}} }\:\:\:\:\:\: \\ $$$${s}=\sqrt{\frac{\mathrm{1}}{\Sigma{f}_{{k}} }\left(\underset{{k}\geqslant\mathrm{1}} {\overset{\Sigma{f}_{{k}} } {\sum}}\left({x}_{{i}} −\overset{−} {{x}}\right)^{\mathrm{2}} {f}_{{i}} \right)}\:\:\:\:\:\:\:{s}={standerd}\:{deviation} \\ $$$${m}_{\mathrm{3}} =\frac{\mathrm{1}}{\Sigma{f}_{{i}} }\underset{{k}\geqslant\mathrm{1}} {\overset{\Sigma{f}_{{k}} } {\sum}}\left({x}_{{k}} −\overset{−} {{x}}\right)^{\mathrm{3}} {f}_{{i}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}_{\mathrm{3}} =\:\mathrm{3}{rd}\:{order}\:{moment}\:{about}\:{mean} \\ $$$${Kurtosis}=\frac{{m}_{\mathrm{4}} }{{s}^{\mathrm{4}} }−\mathrm{3} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *