Menu Close

Question-123771




Question Number 123771 by benjo_mathlover last updated on 28/Nov/20
Commented by benjo_mathlover last updated on 28/Nov/20
 let ⧫ = man , ♥=woman   ⧫♥⧫♥⧫♥⧫♥⧫♥⧫♥⧫=   3! ×C_3 ^6 ×5! ×42  p(A)= ((3!×C_3 ^6 ×7!)/(10!)) = ((6×20×7!)/(10×9×8×7!))=(1/6)
$$\:{let}\:\blacklozenge\:=\:{man}\:,\:\heartsuit={woman} \\ $$$$\:\blacklozenge\heartsuit\blacklozenge\heartsuit\blacklozenge\heartsuit\blacklozenge\heartsuit\blacklozenge\heartsuit\blacklozenge\heartsuit\blacklozenge= \\ $$$$\:\mathrm{3}!\:×{C}_{\mathrm{3}} ^{\mathrm{6}} ×\mathrm{5}!\:×\mathrm{42} \\ $$$${p}\left({A}\right)=\:\frac{\mathrm{3}!×{C}_{\mathrm{3}} ^{\mathrm{6}} ×\mathrm{7}!}{\mathrm{10}!}\:=\:\frac{\mathrm{6}×\mathrm{20}×\mathrm{7}!}{\mathrm{10}×\mathrm{9}×\mathrm{8}×\mathrm{7}!}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\: \\ $$
Commented by benjo_mathlover last updated on 28/Nov/20
it is correct ?
$${it}\:{is}\:{correct}\:? \\ $$
Commented by mr W last updated on 28/Nov/20
correct! but what did you think by  writing 5!×42?  to place three women into the six   places between the 7 men there are  C_3 ^6  ways, to arrange the 3 women and  7 men there are 3!×7! ways,   therefore the answer is  p(A)=((C_3 ^6 ×3!×7!)/(10!))
$${correct}!\:{but}\:{what}\:{did}\:{you}\:{think}\:{by} \\ $$$${writing}\:\mathrm{5}!×\mathrm{42}? \\ $$$${to}\:{place}\:{three}\:{women}\:{into}\:{the}\:{six}\: \\ $$$${places}\:{between}\:{the}\:\mathrm{7}\:{men}\:{there}\:{are} \\ $$$${C}_{\mathrm{3}} ^{\mathrm{6}} \:{ways},\:{to}\:{arrange}\:{the}\:\mathrm{3}\:{women}\:{and} \\ $$$$\mathrm{7}\:{men}\:{there}\:{are}\:\mathrm{3}!×\mathrm{7}!\:{ways},\: \\ $$$${therefore}\:{the}\:{answer}\:{is} \\ $$$${p}\left({A}\right)=\frac{{C}_{\mathrm{3}} ^{\mathrm{6}} ×\mathrm{3}!×\mathrm{7}!}{\mathrm{10}!} \\ $$
Commented by benjo_mathlover last updated on 28/Nov/20
because at both ends have to be occupied by men then many ways 6x7 = 42 sir
Commented by mr W last updated on 28/Nov/20
but we don′t need to arrange the two  men at ends at first and then the  other five men, we can arrange all  7 men all at once. certainly the  result is the same:  7×6×5!=7!
$${but}\:{we}\:{don}'{t}\:{need}\:{to}\:{arrange}\:{the}\:{two} \\ $$$${men}\:{at}\:{ends}\:{at}\:{first}\:{and}\:{then}\:{the} \\ $$$${other}\:{five}\:{men},\:{we}\:{can}\:{arrange}\:{all} \\ $$$$\mathrm{7}\:{men}\:{all}\:{at}\:{once}.\:{certainly}\:{the} \\ $$$${result}\:{is}\:{the}\:{same}: \\ $$$$\mathrm{7}×\mathrm{6}×\mathrm{5}!=\mathrm{7}! \\ $$
Commented by benjo_mathlover last updated on 28/Nov/20
oo thank you sir
$${oo}\:{thank}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *