Menu Close

Question-123823




Question Number 123823 by Dwaipayan Shikari last updated on 28/Nov/20
Answered by mindispower last updated on 29/Nov/20
(1+x)^a =1+Σ_(n≥1) (1/(n!))Π_(k=0) ^(n−1) (a−k).x^n   (1−ksin^2 (x))^(−(1/2)) =1+Σ(1/(n!))Π_(k=0) ^(n−1) (−(1/2)−k).sin^(2n) (x)  =1+Σ_(n≥1) (((−1)^n )/(n!2^n ))Π_(k≤n−1) (1+2k).k^n sin^(2n) (x)  =1+Σ_(n≥1) (((−1)^n (2n−1)!!)/(n!.2^n ))k^n sin^(2n) (x)  ∫_0 ^(π/2) (dx/( (√(1−ksin^2 (x)))))=∫_0 ^(π/2) (1+Σ_(n≥1) (((−1)^n )/(n!.2^n ))(2n−1)!!.k^n sin^(2n) (x))dx  S_n =(π/2)+Σ(((−1)^n (2n−1)!!.k^n )/(2^n n!))∫_0 ^(π/2) sin^(2n) (x)dx  ∫_0 ^(π/2) sin^a (x)=(1/2).2∫_0 ^(π/2) sin^(2((a/2)+(1/2))−1) cos^(2(1/2)−1) (x)dx  (1/2)β((a/2)+(1/2),(1/2))=((Γ((a/2)+(1/2))Γ((1/2)))/(2Γ(1+(a/2)))) , valid for Re(a)>−1  s_n =(π/2)+Σ_(n≥1) (((−1)^n (2n−1)!!)/(2^n .n!)).k^n .(1/2)((Γ(n+(1/2))Γ((1/2)))/(Γ(1+n)))  Γ(n+(1/2))=Π_(k=0) ^(n−1) (n−(1/2)−k)Γ((1/2)),Γ((1/2))=(√π)  Γ(1+n)=n!  ⇔  S_n =(π/2)+Σ_(n≥1) (((−1)^n (2n−1)!!)/(2^n n!))k^n .(1/2)Π_(k≤n−1) (((2n−1−2k)/2))Γ((1/2))Γ((1/2)).(1/(n!))  =(π/2)+Σ_(n≥1) (((−1)^n (2n−1)!!.(2n−1)!!)/(2^n n!.2.2^n n!))k^n Γ^2 ((1/2))  =(π/2)+Σ_(n≥1) ((((2n−1)!!)/(n!)))^2 (((−k)^n π)/2^(2n+1) )  somthing missing  not,Σ_(n≥0) ((((2n−1)!!)/(n!)))^2 ....  by comparison⇒(−k)^n =256^n   ⇒(−k)^n =256^n e^(2iπm)   ⇒−k=256e^((2iπm)/n) ,∀n tru   n→∞,−k=256⇒k=−256  (√k)=+_− 16i
(1+x)a=1+n11n!n1k=0(ak).xn(1ksin2(x))12=1+Σ1n!n1k=0(12k).sin2n(x)=1+n1(1)nn!2nkn1(1+2k).knsin2n(x)=1+n1(1)n(2n1)!!n!.2nknsin2n(x)0π2dx1ksin2(x)=0π2(1+n1(1)nn!.2n(2n1)!!.knsin2n(x))dxSn=π2+Σ(1)n(2n1)!!.kn2nn!0π2sin2n(x)dx0π2sina(x)=12.20π2sin2(a2+12)1cos2121(x)dx12β(a2+12,12)=Γ(a2+12)Γ(12)2Γ(1+a2),validforRe(a)>1sn=π2+n1(1)n(2n1)!!2n.n!.kn.12Γ(n+12)Γ(12)Γ(1+n)Γ(n+12)=n1k=0(n12k)Γ(12),Γ(12)=πΓ(1+n)=n!Sn=π2+n1(1)n(2n1)!!2nn!kn.12kn1(2n12k2)Γ(12)Γ(12).1n!=π2+n1(1)n(2n1)!!.(2n1)!!2nn!.2.2nn!knΓ2(12)=π2+n1((2n1)!!n!)2(k)nπ22n+1somthingmissingnot,n0((2n1)!!n!)2.bycomparison(k)n=256n(k)n=256ne2iπmk=256e2iπmn,ntrun,k=256k=256k=+16i
Commented by mnjuly1970 last updated on 29/Nov/20
excellent sir ...
excellentsir
Commented by Dwaipayan Shikari last updated on 29/Nov/20
This is  a question from′′ Brilliant ′′
ThisisaquestionfromBrilliant
Commented by Dwaipayan Shikari last updated on 29/Nov/20
https://brilliant.org/problems/elliptic-integral
Commented by mindispower last updated on 29/Nov/20
we can use (x+1)!!=(x+1)(x−1)!!  ⇒1!!=1.(−1)!!  ⇒(−1)!!=1  withe that  n=0  ((((−1)!!)/(0!)))^2 .((256^0 .π)/2^(2.0+1) )=(π/2)  we are donne
wecanuse(x+1)!!=(x+1)(x1)!!1!!=1.(1)!!(1)!!=1withethatn=0((1)!!0!)2.2560.π22.0+1=π2wearedonne

Leave a Reply

Your email address will not be published. Required fields are marked *