Menu Close

Question-123829




Question Number 123829 by Algoritm last updated on 28/Nov/20
Commented by Algoritm last updated on 28/Nov/20
prove that
$$\mathrm{prove}\:\mathrm{that}\: \\ $$
Commented by mr W last updated on 28/Nov/20
x=((100k)/(99)) with k∈[0,98]
$${x}=\frac{\mathrm{100}{k}}{\mathrm{99}}\:{with}\:{k}\in\left[\mathrm{0},\mathrm{98}\right] \\ $$
Answered by Snail last updated on 28/Nov/20
(x/(100))=x−⌊x⌋  ⌊x⌋=((99x)/(100))  now let ⌊x⌋=m  x=((100m)/(99))  where m∈[0,98]   because of 0≤{x}<1
$$\frac{{x}}{\mathrm{100}}={x}−\lfloor{x}\rfloor \\ $$$$\lfloor{x}\rfloor=\frac{\mathrm{99}{x}}{\mathrm{100}} \\ $$$${now}\:{let}\:\lfloor{x}\rfloor={m} \\ $$$${x}=\frac{\mathrm{100}{m}}{\mathrm{99}} \\ $$$${where}\:{m}\in\left[\mathrm{0},\mathrm{98}\right]\:\:\:{because}\:{of}\:\mathrm{0}\leqslant\left\{{x}\right\}<\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *