Question Number 123967 by Algoritm last updated on 29/Nov/20
Answered by TANMAY PANACEA last updated on 29/Nov/20
$${t}^{\mathrm{6}} ={x}+\mathrm{2} \\ $$$$\int\frac{{t}}{{t}^{\mathrm{2}} +{t}^{\mathrm{3}} }×\mathrm{6}{t}^{\mathrm{5}} {dt} \\ $$$$\int\frac{\mathrm{6}{t}^{\mathrm{4}} }{\mathrm{1}+{t}}{dt} \\ $$$$\mathrm{6}\int\frac{{t}^{\mathrm{4}} −\mathrm{1}+\mathrm{1}}{{t}+\mathrm{1}}{dt} \\ $$$$\mathrm{6}\int\frac{\left({t}^{\mathrm{2}} +\mathrm{1}\right)\left({t}+\mathrm{1}\right)\left({t}−\mathrm{1}\right)+\mathrm{1}}{{t}+\mathrm{1}}{dt} \\ $$$$\mathrm{6}\int{t}^{\mathrm{3}} −{t}^{\mathrm{2}} +{t}−\mathrm{1}+\frac{\mathrm{1}}{{t}+\mathrm{1}}\:\:{dt} \\ $$$$\mathrm{6}\left\{\frac{{t}^{\mathrm{4}} }{\mathrm{4}}−\frac{{t}^{\mathrm{3}} }{\mathrm{3}}+\frac{{t}^{\mathrm{2}} }{\mathrm{2}}−{t}+{ln}\left({t}+\mathrm{1}\right)\right\}+{c} \\ $$$${put}\:{t}=\left({x}+\mathrm{2}\right)^{\frac{\mathrm{1}}{\mathrm{6}}} \\ $$