Menu Close

Question-124141




Question Number 124141 by nico last updated on 01/Dec/20
Answered by Lordose last updated on 01/Dec/20
  ∫_( 0) ^( ∞) e^(−ix^2 ) dx       Set u=x(√i)  ⇒ du = (√i)dx  (1/( (√i)))∫_( 0) ^( ∞) e^(−u^2 ) du  (1/( (√i)))∙((√π)/2) = −((i(√(iπ)))/2)
0eix2dxSetu=xidu=idx1i0eu2du1iπ2=iiπ2
Answered by Bird last updated on 01/Dec/20
∫_0 ^∞  e^(−ix^2 ) dx=∫_0 ^∞  e^(−((√i)x)^2 ) dx  =_((√i)x=t)   ∫_0 ^∞   e^(−t^2 ) (dt/( (√i))) =(1/e^((iπ)/4) )×((√π)/2)  =((√π)/2)e^(−((iπ)/4))  =((√π)/2)(cos((π/4))−isin((π/4)))  =((√π)/2)(((√2)/2)−i((√2)/2))=((√(2π))/4)−i((√(2π))/4)
0eix2dx=0e(ix)2dx=ix=t0et2dti=1eiπ4×π2=π2eiπ4=π2(cos(π4)isin(π4))=π2(22i22)=2π4i2π4

Leave a Reply

Your email address will not be published. Required fields are marked *