Menu Close

Question-124791




Question Number 124791 by ajfour last updated on 06/Dec/20
Commented by ajfour last updated on 06/Dec/20
If p, q, r are roots of equation  x^3 −x−c = 0   ,  find k.
Ifp,q,rarerootsofequationx3xc=0,findk.
Answered by ajfour last updated on 08/Dec/20
m=tan θ=−(r/k)  ((2m)/(1−m^2 ))=tan 2θ=((p−r)/k)  (−km)^3 =(−km)+c   ....(I)  (p/k)=((2m−m+m^3 )/(1−m^2 ))=((m(m^2 +1))/(1−m^2 ))  p=((km(m^2 +1))/(1−m^2 ))  k^3 m^3 (m^2 +1)^3 =(1−m^2 )^2 km(m^2 +1)                                    +c(1−m^2 )^3   (km−c)(m^2 +1)^3 =(1−m^2 )^2 km(1+m^2 )                                       +c(1−m^2 )^3   4km^3 (m^2 +1)=c{(1−m^2 )^3 +(1+m^2 )^3 }  ⇒  4km^3 (1+m^2 )=2c(1+3m^4 )  ...(II)  from (I)&(II)  4km^3 (1+m^2 )=2km(1−k^2 m^2 )(1+3m^4 )  ⇒  2m^2 (1+m^2 )=(1−k^2 m^2 )(1+3m^4 )  ⇒ 2m^2 +2m^4 =1+3m^4 −k^2 m^2 (1+3m^4 )  ⇒ k^2 m^2 =((m^4 −2m^2 +1)/(1+3m^4 )) = (((1−m^2 )^2 )/(1+3m^4 ))  &   k^2 m^2 =((c^2 (1+3m^4 )^2 )/(4m^4 (1+m^2 )^2 ))  ⇒ (((1−m^2 )^2 )/(1+3m^4 ))=((c^2 (1+3m^4 )^2 )/(4m^4 (1+m^2 )^2 ))  ⇒  ((4m^4 (1−m^2 )^2 (1+m^2 )^2 )/((1+3m^4 )^3 ))=c^2   ⇒  ((4t(1−t)^2 )/((1+3t)^3 ))=c^2     _________________________
m=tanθ=rk2m1m2=tan2θ=prk(km)3=(km)+c.(I)pk=2mm+m31m2=m(m2+1)1m2p=km(m2+1)1m2k3m3(m2+1)3=(1m2)2km(m2+1)+c(1m2)3(kmc)(m2+1)3=(1m2)2km(1+m2)+c(1m2)34km3(m2+1)=c{(1m2)3+(1+m2)3}4km3(1+m2)=2c(1+3m4)(II)from(I)&(II)4km3(1+m2)=2km(1k2m2)(1+3m4)2m2(1+m2)=(1k2m2)(1+3m4)2m2+2m4=1+3m4k2m2(1+3m4)k2m2=m42m2+11+3m4=(1m2)21+3m4&k2m2=c2(1+3m4)24m4(1+m2)2(1m2)21+3m4=c2(1+3m4)24m4(1+m2)24m4(1m2)2(1+m2)2(1+3m4)3=c24t(1t)2(1+3t)3=c2_________________________

Leave a Reply

Your email address will not be published. Required fields are marked *