Menu Close

Question-125526




Question Number 125526 by ka7th last updated on 11/Dec/20
Answered by Dwaipayan Shikari last updated on 11/Dec/20
Σ_(n=1) ^n n^m =(1/(m+1))(n^(m+1)  (((m+1)),(0) )β_0 +n^m  (((m+1)),(1) )β_1 +n^(m−1)  (((m+1)),(2) )β_2 +....)  β_n =Bernoulli numbers
$$\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}{n}^{{m}} =\frac{\mathrm{1}}{{m}+\mathrm{1}}\left({n}^{{m}+\mathrm{1}} \begin{pmatrix}{{m}+\mathrm{1}}\\{\mathrm{0}}\end{pmatrix}\beta_{\mathrm{0}} +{n}^{{m}} \begin{pmatrix}{{m}+\mathrm{1}}\\{\mathrm{1}}\end{pmatrix}\beta_{\mathrm{1}} +{n}^{{m}−\mathrm{1}} \begin{pmatrix}{{m}+\mathrm{1}}\\{\mathrm{2}}\end{pmatrix}\beta_{\mathrm{2}} +….\right) \\ $$$$\beta_{{n}} ={Bernoulli}\:{numbers} \\ $$
Commented by ka7th last updated on 11/Dec/20
this sis true for k=1, what about other k, I'm looking at a sum of sums so to speak not just sums to the mth power

Leave a Reply

Your email address will not be published. Required fields are marked *