Menu Close

Question-125632




Question Number 125632 by Mathgreat last updated on 12/Dec/20
Answered by snipers237 last updated on 13/Dec/20
CosA=((b^2 +c^2 −a^2 )/(2bc)) ⇒ sin^2 ((A/2))=((1−cosA)/2)=((a^2 −(b−c)^2 )/(4bc))<(a^2 /(4bc))  so 0< sin((A/2))< (a/(2(√(bc))))   samely prove that 0<sin((B/2))<(b/(2(√(ac))))  snd 0<sin((C/2))<(c/(2(√(ab))))   Then time each member .  Let For You To Conclude .
$${CosA}=\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{bc}}\:\Rightarrow\:{sin}^{\mathrm{2}} \left(\frac{{A}}{\mathrm{2}}\right)=\frac{\mathrm{1}−{cosA}}{\mathrm{2}}=\frac{{a}^{\mathrm{2}} −\left({b}−{c}\right)^{\mathrm{2}} }{\mathrm{4}{bc}}<\frac{{a}^{\mathrm{2}} }{\mathrm{4}{bc}} \\ $$$${so}\:\mathrm{0}<\:{sin}\left(\frac{{A}}{\mathrm{2}}\right)<\:\frac{{a}}{\mathrm{2}\sqrt{{bc}}}\: \\ $$$${samely}\:{prove}\:{that}\:\mathrm{0}<{sin}\left(\frac{{B}}{\mathrm{2}}\right)<\frac{{b}}{\mathrm{2}\sqrt{{ac}}}\:\:{snd}\:\mathrm{0}<{sin}\left(\frac{{C}}{\mathrm{2}}\right)<\frac{{c}}{\mathrm{2}\sqrt{{ab}}}\: \\ $$$${Then}\:{time}\:{each}\:{member}\:. \\ $$$${Let}\:{For}\:{You}\:{To}\:{Conclude}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *